Interventions

  • name effect species mean median maximum
    Cynomorium songaricum supplementation The yang-tonifying herbal medicine cynomorium songaricum Repr. (CS) supplementation to the diet extends both the mean and the maximum lifespan of adult females, but insignificantly that of males. In females, maximum lifespan (determined by the 90th survival percentile) is increased by up to 11.4% with 10 mg/mL CS and 5.7% with both 20 and 30 mg/mL Cs. Mean lifespan is significantly extended by 15, 18 and 11% upon treatment with 10, 20, and 30 mg/mL CS, respectively (all P <0.001). Increased lifespan by CS is correlated with higher resistance to oxidative stress and starvation and lower lipid hydroxyperoxids levels as well as accompanied by beneficial effects, such as improved mating readiness, increased fecundity, and suppresion of age-related learning impairment in aged animals [22844336]. Fly +11 to +18 +5.7 to +11.4
    D-chiro-inositol supplementation D-chiro-inositol supplementation to the diet extends adult longevity in both male and female animals. 20 microMolar dose of D-chiro-inositol extends median lifespan by 16.7 (p < 0.001) for males and 13% (p < 0.001) for females. Lifespan extension by D-chrio-inositol is accompanied by protection against oxidative and starvation stresses, improvement in health span, and not reduction in fecundity. Nuclear localization of foxo increases in D-chiro-inositol-fed animals [22843669]. Fly +13 to +16.7
    Pinitol supplementation Pinitol (a 3-methoxy analogue of D-chiro-inositol) supplementation to the diet. For both males and females, a 20 microMolar dose of pinitol significantly extends median lifespan by 13% (p < 0.05) and 12.5% (p < 0.05), respectively. Lifespan extension by pinitol is accompanied by protection against oxidative and starvation stresses, improvement in health span, and no reduction in fecundity. Pinitol increases organismal lifespan of both in dietary restriction and ad libitum conditions. Nuclear localization of foxo increases in pinitol-fed animals. Pinitol treatment significantly activates JNK and S6K, but not AKT [22843669]. Fly +12.5 to +13
    Black rice extract supplementation In fruit fly, 30 mg/ml black rice extract prolonges mean lifespan by 14% which is accompanied with mRNA up-regulation of SOD1, SOD2, CAT and Rpn11 Rpn11 and with downregulation of Mth [22930061]. Fly +14
    Resveratrol supplementation Supplementation with resveratrol extends the lifespan [15254550], but not in always [17875315]. Fly
    Minocycline treatment Treatment with minocycline (0.87mM) prolongs mean, median and maximum lifespan of wild-type (Oregon strain) of both genders. In females mincocycline extend mean and maximum lifespan by 57 and 78%, respectively. In males minocycline results in a mean and maximum lifespan extension by 114 and 28%, respectively [23185716]. Fly +57.1 to +114.3 +28.1 to +78.3
    Metformin treatment In fruit fly feeding metformin to adult s results in robust AMPK activation and reduces lipid stores, but does not increase lifespan in either males or females. Administration of high concentration are even toxic [23077661]. Fly
    (R)-N-(2-heptyl)-N-methylpropargylamine treatment Addition of 0.66 ng/fly/day (R)-N-(2-heptyl)-N-methylpropargylamine to a sucrose-based diet resulted in no significant effect on lifespan, but lifespan reduction due to galactose feeding is partially suppressed by supplementation with (R)-deprenyl or (R)-N-(2-heptyl)-N-methylpropargylamine [9972869]. Fly
    Curcumin treatment In fruit fly, 0.5 an 1.0 mg/g curcumin in the diet increases mean lifespan by 6.2 and 25% in females and by 15.5 and 12.6 in males, respectively. Lifespan extension by curcumin was associated with the increased superoxide dismutase (SOD) activity, upregulation of Ms-SOD and CuZn-SOD genes, and the downregulation of *dInR*, *ATTD*, *Def*, *CecB* and, *DptB* genes as well as reduction of lipofuscin, malondialdehyde and lipid peroxidation [22653297; 23325575]. Curcumin prolongs life and enhances activity of fruit fly Alzheimer diseased flies [22348084]. Fly +6.2 to +25
    THC treatment Tetrahydocurcumin extends the lifespan and reduces oxidative stress in male and female fruit flies. THC extends lifespan of Drosophila and inhibits the oxidative stress response by regulating *FOXO* and *Sir2* [22156377]. Fly
    DATS treatment Treatment with 5-10 μM DATS increases lifespan even when treatment is started during young adulthood. DATS increases the lifespan of daf-2 and daf-16 mutants, but not that of eat-2 mutants. DATS treatment leads to the induction of the skn-1 target gene gst-4 and this induction is dependent on skn-1. DATS effect on lifespan is dependent on skn-1 activity in both intestine and ASI neurons [21296648]. Fly
    Wortmannin treatment Treatment of Drosophila imago with 0.5 micromolar wortmannin increases median (by 5%) and maximum (by 39%) lifespan in males (p < 0.001), but the lifespan differences in females were statistical insignificant (p > 0.05) [22661237]. Low dose of wortmannin (5 microM) slightly increase the median and maximum lifespan [20017609]. Fly +5 +39
    LY294002 treatment Treatment of Drosophila imago with 5 micromolar LY294002 increases median (by 14%) and maximum (by 16-22%) lifespan (p<0.001) in females and males, respectively [22661237]. Low dose of LY294002 (5 microM) slightly increase the median and maximum lifespan [20017609]. Fly +14 +16 to +22
    Rapamycin treatment Treatment of Drosophila imago with rapamycin induces increases of median (by 5-6%) lifespan (p < 0.01) in males and females, respectively and increase of maximum lifespan (by 33%) in females (p < 0.01) [22661237]. Low dose of LY294002 (5 microM) slightly increase the median and maximum lifespan [20017609]. Fly +5 to +6 +33
    Trichostatin A supplementation Histone deacetylase inhibitor Trichostatin A (TSA) extends the lifespan of Drosophila melanogaster by promoting the hsp22 gene transcription, and affecting the chromatin morphology at the locus of hsp22 gene along the polytene chromosome [15346199]. hsp70 and hsp22 RNA levels are higher in long-lived than in short-lived fly lines. The HDAC inhibitor TSA causes a higher expression of hsp22 and hsp70, and strikingly influences the lifespan in both long and short-lived lines, with variable degrees (up to 25%) [15695762]. Fly +25
    Rapamycin treatment Treatment with rapamcyin increases mean, median, 75th %ile and maximum lifespan by 19-29, 17-29, 24-32 an 19%, respectively on OP50. On HT115 rapamycyin extends mean, median and 75th %ile of lifespan by 8-36, 4-46 and 12-44%, respectively. Rapamycin robustly increases lifespan in two daf-16 mutants (mgDf47 and mu86) with or without FUdR and with growth on either the standard strain OP50 or the feeding RNAi strain HT115 [22560223]. Worm +8 to +29 +4 to +46 +19
    Icariin treatment Icariin and its derivate icariside II extend lifespan. Animals treated with icariin have high levels of icariside II [22216122]. Worm
    Icariside II treatment Icariside II and its derivate icarrin extend lifespan. Animals treated with icariin have high levels of icariside II. Icariside II also increases thermo and oxidative stress tolerance, slow locomotion decline in late adulthood and delay the onset of paralysis mediated by polyQ and ABeta(1-42) proteotoxicity. Lifespan extension by Icariside II is dependent on IIS, since daf-16(mu86) and daf-2(e1370) fails to sho exhibit lifespan extension upon icariside treatment. Incariside II treatment upregulates expression of DAF-16 targets in wild-type. HSF-1 has also a role in icariside II-dependent lifespan extension [22216122]. Worm
    Quercetin treatment Quercitin significantly extends the lifespan. Lifespan extension by quercitin has no effect on reproduction and body length. Quercitin induced lifespan extenison was neither dependent on a dietary restriction mimetic nor on sir-2.1 [19043800]. Worm
    NAD supplementation Supplementation with NAD extended lifespan and this extension was dependent on sir-2.1 and daf-16 and associated with upregulation of sod-3 [19370397]. Worm
    Apply polyphenol treatment Treatment with 100 microgram/mL apple polyphenol increases mean lifespan of wild-type N2 and FEM-1 by 12.0 and 5.3%, respectively [20717869]. Worm +5.3 to 12.0
    (-)-epicatechin treatment Treatment with (-)-epidcatechin do no extend lifespan [20717869]. Worm
    Procyanidin treatment Treatment with 65 microgram/mL Procyanidins from apple extends the lifespan of N2 and FEM-1 by 12.1 to 8.4%, respectively and does not modify grwoth, food intake of fecundity. Procyanidin treatment has no effect on mev-1 or sir-2.1 mutants [20717869]. Worm +8.4 to +12.1
    Eleutherococcus senticosus treatment Plant adaptogen Eleutherococcus senticosus (SHE-3; alias Acantopanax senticosus) increase stress resistance and mean lifespan in a dose-dependent manner. 250 microgram/ml SHE-3 signinifanclty increases lifespan between 10 and 20% 9 (P < 0.001), increase maximum lifepsan with 2-3 days and pospones the moment when the first individuals die. With higher concentrations, the effect is weakerm wheras at the highest concentrations (2500 microgram/mL) a lifespan shortenening effect of 15-25% (P < 0.001) occurs. Treatment with SHE-3 induces translocation of DAF-16 and activation of HSP-16 [18536978]. Worm +10 to +20
    Rhodiola rosea treatment Plant adaptogen Rhodiola rosea (SHE-5) increase stress resistance and mean lifespan in a dose-dependent manner. 10-25 microgram/ml SHE-5 signinifanclty increases lifespan between 10 and 20% 9 (P < 0.001), increase maximum lifepsan with 2-3 days and pospones the moment when the first individuals die. With higher concentrations, the effect is weaker whereas at the highest concentrations (250 microgram/mL) a lifespan shortenening effect of 15-25% (P < 0.001) occurs. Treatment with SHE-5 induces translocation of DAF-16 and activation of HSP-16 [18536978]. Worm +10 to +20
    Interventions are an extension of GenAge and GenDR.