Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    CDC6 Cell Division Cycle The CDC6-1 conditional allele results in an approximately 20% increase in mean replicative life span. This allele is defective for replicative initiation form the rDNA ARS at 27 degree Celsius, resulting in a reduced rate of extrachromosomal rDNA circle accumulation [9428525]. The cdc6-1 allele results in genomic instability at the permissive temperature [8552037]. Budding yeast
    GPA2 G Protein Alpha subunit 2 Deletion of GPA2 increases mean and maximum replicative lifespan by 40% and 26%, respectively [11000115]. Deletion of GPA2 extends replicative lifespan by reducing cAMP-PKA activity and provides a genetic model for DR [11000115]. Budding yeast
    DNM1 Dnm1p Deletion of DNM1 extends significantly mean and maximum lifespan by 49 and 111% in FY10 strain and by 15 and 12% in BY4741 strain [17173038]. Budding yeast
    RAS1 Deletion in RAS1 increases mean (23%) and maximum (29%) replicative lifespan (in SP1) [8034612]. RAS1 deletion increases replicative lifespan by 15% in the alpha strain [19030232]. However, deletion of RAS1 slightly shortens chronological lifespan (in SP1) [12586694]. No lifespan extension results from overexpression of RAS1 (in SP1) [8034612]. Budding yeast
    REI1 Cytoplasmic pre-60S factor REI1 deletion increases mean replicative lifespan by about 40% [16293764] in the alpha and a strains [19030232]. Budding yeast
    ROM2 RhO1 Multicopy suppressor 2 Deletion of ROM2 increases mean replicative lifespan of the alpha strain by about 50% [16293764]. ROM deletion mutant replicative lifespan increases by 49% in the alpha strain and 16% in a strain. Deletion of ROM2 increases replicative lifespan by 38% in the alpha strain and by 29.3% in the a strain (34.2% in both) [19030232]. Budding yeast
    RPL6B Ribosomal Protein of the Large subunit 6B Deletion of RPL6B significantly increases replicative lifespan [17174052]. Replicative lifespan increases by 15% in the alpha strain and 30-40% in a strain [19030232; 18340043; 18423200]. RPL6B deletion increases replicative lifespan by 30% [16293764]. Budding yeast
    SSD1 Suppressor of SIT4 Deletion 1 Overexpression of SSD1 (addition of a SSD1-V allele) increases replicative lifespan by 50%, independently of SIR2 and SIR2 further extends the lifespan, although SIR2 is necessary for SSD1-V cells to attain maximal lifespan [15126388]. SSD1-V also dramatically increases chronological lifespan with lifespan twice as long as ssd1-d cells [19570907]. Deletion of SSD1 increases replicative lifespan by 50% [Li et al., 2009]. Addition of SSD1-V allele to an ssd1-d strain suppresses the short lifespan of an MPT5 deletion mutant [11805047] and extend wild-type lifespan [Kaeberlein and Guarente, unpublished]. SSD1-V slightly extends the lifespan of swi4 and ccr4 mutant strains and suppresses the temperature sensitive growth phenotype of mpt5, ccr3, swi4, and swi6 single mutants [11805047]. SSD1-V also suppresses the synthetic lethality caused by deletion of MPT5 in combination with a mutation in SWI4, SWI6, or CCR4 [11805047]. SSD1-V suppresses mutations that affect cell wall stability [1545797; 8386319], RNA polymerase III activity [8510644], RNA splicing [10446233], and PKA activity [1848673; 8200529]. Budding yeast
    URE2 UREidosuccinate transport 2 Deletion of URE2 increase mean replicative lifespan by 21-31% in BY4742 [16293764]. URE2 deletion increases replicative lifespan increased by 20% in the alpha strain [19030232]. Budding yeast
    YBR238C Deletion of YBR238C increases mean replicative lifespan by 25 to 34% in the alpha and a strains [16293764; 19030232]. Budding yeast
    CPR7 Cyclosporin-sensitive Proline Rotamase 7 Deletion of CPR7 has no effect on lifespan replicative lifespan, but increases chronological lifespan [11361336] Budding yeast
    IRC14 Deletion of IRC14 increases mean replicative lifespan by 14-22% [16293764]. IRC14 is a dubious ORF overlapping IDH2. Budding yeast
    YDR248C Deletion of YDR248C increases replicative lifespan by 20% in the alpha strain [19030232]. Budding yeast
    YDR307W Deletion of YDR307W increases replicative lifespan by 30% in the alpha strain [19030232]. Budding yeast
    YER186C Deletion of YER186C increases replicative lifespan by 30% in the alpha strain [19030232]. Budding yeast
    YER187W Deletion of YER187W increases replicative lifespan by 30% in the alpha strain [19030232]. Budding yeast
    YGL235W YGL235W increases replicative lifespan by 20% in the alpha strain [19030232]. Budding yeast
    SEG2 Stability of Eisosomes Guaranteed 2 Deletion of SEG2 increases replicative lifespan by 20% in the alpha strain [18340043]. Budding yeast
    INP53 Polyphosphatidylinositol phosphatase, dephosphorylates multiple phosphatidylinositols; involved in trans Golgi network-to-early endosome pathway; hyperosmotic stress causes translocation to actin patches; contains Sac1 and 5-ptase domains Deletion of INP53 increases mean replicative lifespan by 31% [16293764]. INP53 deletion increases replicative lifespan by 31% in the alpha strain and by 10% in the a strain [18340043]. Budding yeast
    VBA5 Vacuolar Basic Amino acid transporter 5 Deletion of of VBA5 increases replicative lifespan by 31% [16293764]. Budding yeast
    YLR422W Deletion of YLR422W increases replicative lifespan by 25% in the alpha strain [19030232]. Budding yeast
    YMR010W Deletion of YMR010W increases replicative lifespan by 30% in the alpha strain [18340043]. Budding yeast
    UGA1 Utilization of GAba 1 Deletion of UGA2 extends replicative lifespan [21371425]. Budding yeast
    LCB4 Long-Chain Base 4 Deletion of LCB4 increases replicative lifespan and cancels out replicative lifespan extension of 0.5% glucose DR [18690010]. Budding yeast
    HXT17 HeXose Transporter 17 HXT17 mutation extends both replicative and chronological lifespan as well as cancels out DR-induced replicative and chronological lifespan extension. Mean and maximum replicative lifespan are extended by 27 and 49%, respectively [21584246]. Budding yeast
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit