Interventions

  • name effect species mean median maximum
    Arhgap1 knockout Most Ahrgap1 knockout mice are weak and die during the neonatal period. Animals that survived have a shorter lifespan (median lifespan is 12 months) and show premature aging-like phenotypes, including a reduction in body mass, a loss of subdermal adipose tissue, lordokyphosis, and osteoporosis [17227869]. Mouse
    Atm knockout Atm-deficient mice are viable, retarded in growth, infertile (male produce no mature sperm and female no gametes), display neurological dysfunction, and exhibit severe defects in T cell maturation while going on to develop thymomas [8917548; 8689683]. The majority of mutant mice rapidly develop thymic lymphomas and die before 4 months of age [8843194]. Cells of Atm(-/-) mice exhibit slow growth also in culture and premature senescence, telomeres are extensively shortened in multiple tissues [8689683]. Mice mutant for Atm and Terc display progressive multi-organ system compromise and features of accelerated aging [12540856]. Mouse
    Atr knockout Deletion of Atr in young adults eliminates 80-90% of proliferating cells and results in several age-related phenotypes accompanied by a depletion of stem and progenitor cells and exhaustion of tissue renewal and homeostatic capacity [18371340]. Atr mutant mice (so called Seckle mice) exhibit high levels of replicative stress during embryogenesis, when proliferation is widespread, but this is reduced to marginal amounts in postnatal life. In spite of this decrease, adult Seckel mice display accelerated aging, which is further aggravated in the absence of p53. Seckel mice die in less than half a year, exhibit pancytopenia, cachexia and signs of premature aging, including hair graying, kyphosis, osteoporosis, accumulation of fat in the bone marrow, decreased density of hair follicles and thinner epidermis [19620979]. Mouse
    Bax knockout Inactivation of proapoptotic Bax extends fertile potential and minimized age-related health problems, including bone and muscle loss, excess fat deposition, alopecia, cataracts, deafness, increased anxiety, and selective attention deficit. Bax deficiency does not lead to an increase in tumor incidence. Despite the apparently increased quality of life of aging females lacing Bax, there is no significant differences in overall lifespan [17360389]. Mouse
    Cdkn1a knockout Deletion of Cdkna1 (alias p21) prolongs the lifespan of telomerase-deficient mice with dysfunctional telomeres and improves the repopulation capacity and self-renewal of hematopoietic stem cells [17143283]. The p21(-/-) strains like the Cdkn1a(tmi/Tyj) exhibits enormous regenerative capacities as it closes ear holes similar to MRL mice [20231440; 21722344]. Mouse
    Efemp1 knockout Efemp1 knockout mice exhibited an early onset of aging-associated phenotypes including a 20% shorted median lifespan and 30% shorter maximum lifespan, decreased body mass, lordokyphosis, reduced hair growth, and atrophy [17872905]. Mouse +20 +30
    Fgf23 knockout Fgf23 knockouts have a short lifespan and display premature aging-like symptoms including kyphosis, muscle wasting, osteopenia, emphysema, uncoordinated movement, atherosclerosis, and atrophy of the intestinal villi, skin, thymus, and spleen [16436465]. Lack of Fgf23 activities results in extensive premature aging-like features and early mortality of Fgf-23(-/-) mice, while restoring the systemic effects of FGF-23 significantly ameliorates these phenotypes, with the resultant effect being improved growth, restored fertility, and significantly prolonged survival of double mutants [18729070]. Mouse
    Foxm1 deletion Deletion of Foxm1 causes age-related deterioration in liver regeneration [14647066]. Mouse
    Drd4 knockout Drd4 knockout mice, when compared with wild-type and heterozygous mice, display a 7 - 9.7% decrease in lifespan, reduced spontaneous locomotor activity, and no lifespan increase when reared in an enriched environment [23283341]. Mouse -7 to -9.7
    • Page 2 of 2
    • 9 of 34 interventions
    Interventions are an extension of GenAge and GenDR.