Interventions

  • name effect species mean median maximum
    Homozygous Prdx1 knockout Homozygous Prdx1 knockout mice have a lifespan significant shorter than +/+ and +/- littermates and develop severe haemolytic anaemia and several malignant cancers (starting at about 9 months of age) [12891360] Mouse
    Homozygous knock-in of proof-reading deficient Polg Mice with a proof-reading-deficient version of Polg display an increased amount of mtDNA mutations (by 3 to 5-fold) and signs of premature ageing including a reduced lifespan, weight loss, reduced subcutaneous fat, alopecia, kyphosis, osteoporosis, anaemia, reduced fertility, and heart enlargement. Median lifespan of homozyous Polg mutant knock-in mice is 48 months [15164064]. Mouse
    HNRNPD deletion HNRNPD deletion leads to accelerated aging as evidenced by strinking telomere erosion, markedly increased DNA damage repsosne at telomere ends, pronounced cellular senescence and rapid premature aging that increases with successive generations [Pont et al., 2012]. Mouse
    High fat diet Lifelong feeding of a high-fat diet markedly reduces lifespan of mice by about 20% for both mean and maximum lifespan [22509016]. Mouse -20 -20
    Heterozyogus Trp53 truncation mutation Mice heterozyogous for an allele of p53 that removes the 5' portion of the protein demonstrate decreased cancer, permature aging phenotypes, and shortened lifespan in the mixed inbred C57BL/6–129/Sv background. It has been proposed that the this allele of p53 results in increased activity/overexpression [11780111]. Mouse
    Heterozyogus Shc1 knockout Heterozyogus Shc1 knockout mice have an 7% increase in mean lifespan [10580504]. Mouse +7
    Heterozyogous fat-specific Insr knockout (FIRKO) Deletion of Insr specifically in adipose tissue results in a 15-18% increase in mean, median and maximum lifespan. Fat-specific insulin-receptor knockout (FIRKO) reduces fat mass and protects against age-related obesity and its subsequent metabolic abnormality, without an decrease in food intake. Both male and female FIRKO mice have an increase in mean lifespan of around 134 days (18%), with parallel increases in median and maximum lifespan. FIRKO mice consume the same amount of food on per animal basis as control littermates, but have 15-25% lower body-mass and 50-70% reduced fat mass [12543978]. Disruption of Insr in all tissues reults in neonatal lethality [8612577]. Mouse +15 to +18 +15 to +18 +15 to +18
    Hells mutation A hypomorphic deletion of helicase domains 3, 4 and part of 2, leads to expression of a C-terminal truncated Hells protein causing an extremely short lifespan. with 60% of homozyogous mutants dying after birth and remaining 40% surviving up to seven weeks (around 25 days) [15105378]. Hells disruption results in genomic hypomethylation, de-repression of silenced genes, and premature aging, characterized by decreased proliferation, increased replicative senescence, and altered expression of Bmi-1 and p16INK4a. Hells mutant exhibit significant hypoglycemia, low birth weight and growth retardation, and signs of premature aging such as greying hair and balding, reduced fat deposition, unstable gait, cachexia, and kyphosis [15105378]. Mouse
    Ghrhr knockout Homozygosity for the Ghrhr(lit) knockout mutation (called little mouse) lowers plasma growth hormone levels, impairs growth and increases lonegevity about 20% [11371619]. Lit homozygous animals are smaller than normal mice [1270792] and their pituitary is defective in growth hormone and prolactin [978118]. Mouse +20
    Ghr knockout Ghr knockouts (the so called Laron mice) are dwarfs with significantly extended lifespan by 40-50% [12933651]. Ghr-/- mice are significantly longer lived as Ghr+/+ or Ghr+/- mice (by 40-50%) in both females and males [10875265; 19370397]. 30% DR fails to affect overall survival, average or median long-lifespan of Growth hormone receptor knockout (GHRKO) mice and increased maximal lifespan only in females. Insulin sensitivity in GHRKO mutants is greater than in wild-type and is not further increased by DR [16682650]. Intermittent fasting also fails to extend the long lifespan of GHRKO mice [19747233]. Lifespan of mice with a deletion in the Ghr gene live almost 5 years [21123740]. In C57BL/6J this mutation increases life expectancy by 16 to 26% depending on gender [12933651] and in mice of mixed genetic background the increases amounted to 36-55% [9371826]. Serum levels of GH are elevated in mutant mice [9371826] and mutants are smaller than wild-type. IGF-1 and IGFBP-3 levels are also reduced in Ghr mutant mice [10875265]. The age-associated decline in memory retention is delayed in Ghr mutants [11336996]. Mouse +16 to +55
    GH overexpression Overexpression of GH is associated wtih markedly reduced lifespan and various indices of premature aging [8100276]. Transgenic mice overexpressing bovine Gh1 are bigger than controls and display early onset of pathological changes in the kidneys such glomerulosis and glomerulonephritis as well as signs of premature aging such as a shortened lifespan, increased astrogliosis, shortened reproductive lifepsan and early onset of age-related changes in cognitive function, hypothalamic neurotransmitter turnover, and plasma corticosterone levels [14583653]. Mouse
    Gh antagonist overexpression Overexpression of a growth hormone antagonist (a mutated bovine growth hormone that competes with the endogenous one) has no effect on lifespan [12933651]. Mouse
    Foxm1 overexpression Increased hepatocyte expression in 12-month-old (aged) transgenic mice of Foxm1b alone is sufficient to restore hepatocyte proliferation to levels found in 2-month-old (young) regenerating liver [14647066]. Mouse
    Foxm1 deletion Deletion of Foxm1 causes age-related deterioration in liver regeneration [14647066]. Mouse
    Fgf23 knockout Fgf23 knockouts have a short lifespan and display premature aging-like symptoms including kyphosis, muscle wasting, osteopenia, emphysema, uncoordinated movement, atherosclerosis, and atrophy of the intestinal villi, skin, thymus, and spleen [16436465]. Lack of Fgf23 activities results in extensive premature aging-like features and early mortality of Fgf-23(-/-) mice, while restoring the systemic effects of FGF-23 significantly ameliorates these phenotypes, with the resultant effect being improved growth, restored fertility, and significantly prolonged survival of double mutants [18729070]. Mouse
    Fgf21 overexpression Overexpression of Fgf-21 increases the mean lifespan by 30% for male mice and 39% for female mice [23066506]. Mice overproducing Fgf21 are lean throughout their lives and remain lean even while eating slightly more than wild-type mice. Fgf21 overproducers tend to be smaller than wild-type mice and female mice were infertile. Although Fgf21 overproducers have significantly lower bone density than wild-type, Fgf21-abundant mice exhibit no ill effects from the reduced bone density and remain active into old age without any broken bones [23066506]. Mouse +30 to +39
    Ercc2 mutation Mutations in Ercc2 increases cancer incidence and appear to accelerate ageing. Homozyogus mutation of Ercc2 results in an extreme shortening (71%) of lifespan (mean lifespan = 7 months) relative to wild-type (mean lifespan = 24 months) [de Boer et al. 2002]. The shortened lifespan of the mutant mouse is accompanied by symptoms of premature aging including osteoporosis, early greying, cahexia, and infertility. It provides a mouse model for the britte hair disorder trichothiodystrophy (TTD) as it phenotypes include britte hair, UV sensitivity, and developmental defects [9651581]. Mouse -71
    Efemp1 knockout Efemp1 knockout mice exhibited an early onset of aging-associated phenotypes including a 20% shorted median lifespan and 30% shorter maximum lifespan, decreased body mass, lordokyphosis, reduced hair growth, and atrophy [17872905]. Mouse +20 +30
    ectopic Trp53 overexpression Mutant mice with activated Trp53 display enhanced resistance to spontaneous tumours and signs of premature ageing including reduced lifespan, osteoporosis, organ atrophy and a diminished stress tolerance [11780111]. Mouse
    Drd4 knockout Drd4 knockout mice, when compared with wild-type and heterozygous mice, display a 7 - 9.7% decrease in lifespan, reduced spontaneous locomotor activity, and no lifespan increase when reared in an enriched environment [23283341]. Mouse -7 to -9.7
    Dnmt gene therapy Injecting a virus that contains extra copies of a Dnmt into elderly mice restored their faulty memories to it oiriganal capacity of young ones. Halving the amount of Dnmt produced by younger mice, deteriotes their memory to that of non-treated older mice [http://www.medicaldaily.com/news/20120702/10573/aging-memory-dna-enzyme-forgetfulness-young-old.htm]. Mouse
    Dietary restriction on low-fat diet DR under a low-fat diet increases mean and maximum lifespan by 20% and 25%, respectively [22509016]. Mouse +20 +25
    Dietary restriction on high-fat diet Dietary restriction on a high-fat diet increases both mean and maximum lifespan by 36% compared to the high-fate diet control group [22509016]. Mouse +36 +36
    Diabenol treatment In female NMRI and transgenic HER-2/neu mice supplementation of diabenol with drinking water 5 times a week since the age of 2 months, increases survival and inhibits spontaneous carcinogenesis. In NMRI diabenol does not influence body weight gain dynamics, food and water consumption, but slowed down age-related disturbances in estrous function and increases the lifespan of all and 10% most long-living ones. Diabenol treatment in NMRI mice also inhibits spontaneous tumor incidence (mammary and lymphomas mainly) and increases mammary tumor latency. Diabenol treatment slows down age-related changes in estrous function in HER-2/neu mice, but fails to influence survival and slightly inhibited the incidence and decrease the size of mammary adenocarcinoma metastasis into the lung [15754958]. Mouse
    Decreased Trp53 Decreased activity of Trp53 results in increased cancer and decreased apoptosis. Mouse
    Interventions are an extension of GenAge and GenDR.