Interventions

  • name effect species mean median maximum
    Rapamycin treatment Rapamcyin increases mouse lifespan and healthspan even when administrated late in life (20 months) [19587680]. Rapamycin enhances learning and memory in young mice and improves these faculties in old mice thereby negating the normal decline in these functions with age. Rapamycin boost levels of neurotransmitters associated with neural plasticity. Rapamycin also lowered anxiety and depressive-like behaviour at all ages from 4, 12 and 28 months. "Happy, feel-good" neurotransmitters such as serotonin, dopamine and norepinephrine are all significantly augmented in the midbrains of rapamycin treated mice [http://denigma.de/url/37]. Treatment with rapamycin increased lifespan and suppresses spontanous tumorgenesis in inbred female mice [22107964]. Mouse
    Pten overexpression Increasing gene dosage via homogeneous and moderate overexpression, while retaining its normal pattern of tissue expression of Pten increases mean, median and maximum lifespan in both females and males. Mean lifespan is extended by 18% (males), 11% (females) and 14% (both). Median lifespan in males, females and both increases by 12%, 16% and 12%, respectively [22405073]. Transgenic Pten mice carrying the additional genomic copies of Pten are protected from cancer and present a significant extension of lifespan that is independent of their lower cancer incidence. Pten(g) mice have an increased energy expenditure and protection from metabolic pathologies [22405073]. Mouse +14 +12
    Prop1 knockout Knockouts of Prop1 are dwarf (hence called the Ames dwarf mice) but live approximately 1 year longer than controls. Mean lifespan of males and females is extended by 49 and 68%, respectively Ames dwarf mice are small due to retarded post-natal growth and have primary pituitary deficiency consisting of the absence of, or extreme reduction in, anterior pituitary cells which produces growth hormone, prolactin and thyroid-stimulating hormone, and consequently a deficiency in these hormones. Levels of IGF1 is also extreme low in Ames dwarf mice [8900272]. Mouse +49 to +68
    Prkar2b knockout Loss of function of Prkar2b results in mice that are lean and insulin sensitive. Both median and maximum lifespan is increased by 14%. Median lifespan is increasesd (from 884 to 1005) and 80% lifespan increased from 941 to 1073 days. There is no difference either in median or 80% lifespan in female genotypes [19536287]. Mouse +0 to +14 +0 to +14
    Pou1f1 knockout Snell dwarf mutation (Pit1dw) due to knockout of Pou1f1 results in a dramatic lifespan extension. The mean, median and maximum lifespan is increased by 40-50% for Snell dwarf (Pit1dw/Pit1dw) DW/J females, and 25-50% for dwarf DWC3F1 males and females with a compound heterozygous Pit1dw/Pit1dw-J genotype. Although, Snell dwarf (Pit1dw/Pit1dw) DW/J males exhibit aspects of delayed senescence, their median lifespan is by about 25% shorter, probably due to the affects of housing conditions [11718806]. Mice homozygous for loss-of-function mutations at Pit1 locus have a mean and maximum lifespan extension over 40%. Mutant dwJ/dw animals exhibit delays in age-dependent collagen cross-linking and in six age-senstive indices of immune system status. Pituitary transplantation into dwarf mice does not reverse the lifespan extension effect. Male Snell dwarf mice become obese and exhibit proportionately high leptin levels in old age [11371619]. Mouse +25 to +50 +25 to +50 +25 to +50
    Plau overexpression Transgenic mice (called alphaMUPA) overexpression Plau in many brain sites (including hypothalamus) consume (20%) less food, have a reduced body weight (by 20%) and length (by 6%), reduced temperature, and a prolonged lifespan (by 20%) [9060969]. alphaMUPA mice have reduced levels of blood sugar and smaller size and birth frequency compared to parental control [9060969] as well as a reduced body weight [10638529]. Mouse +20
    Pcmt overexpression Overexpression of Pcmt extends lifespan by 32-39% at 29 degrees but not at 25 degrees [11742076]. The adult lifespan of animals overexpressing Pcmt is extended [18772467]. Mouse 0 to 39
    Pck1 overxpression Overexpression of Pck1 in skeletal muscle results in an increased number of mitochondria, markedly increase in activity, and extended lifespan by 30%. Transgenic mice ate 60% more than controls but had half the body weight and 10% of the body fat [17716967; Hakimi, Berger and Hanson, unpublished]. Pck1 overxpression leads to increased storage and utilization of fatty acids in muscle for energy purposes and mutants store up to 5-times more triglyceride in their skeletal muscle, and exhibit increased levels of physiological activity [18394430]. Mouse +30
    p53 deletion mutation Mice heterozyogous for an allele of p53 that removes the 5' portion of the protein demonstrate decreased cancer, permature aging phenotypes, and shortened lifespan [11780111]. Mouse
    Overexpression of mitochondrial targeted CAT Overexpression of human catalase targeted to mitochondria (MCAT) extends mean and maximum lifespan by about 20% in mice. Inactivation of aconitase in heat mitochondria and mitochondrial damage is also reduced in long-lived CAT mutant mice [15879174]. The MCAT strain has a reduced severity of age-dependent arteriosclerosis and increased genomic stability, as indicated by an decrease in oxidative stress and mitochondrial deletions in heart and muscle tissues. Median and maximum lifespan in increased about 17 - 21% [16144468]. Mouse +20 +17 to +21 +17 to +21
    Nudt1 Overexpression hMTH1-Tg mice express high levels of the hMTH1 hydrolase that degrades 8-oxoGTP and 8-oxoGTP and excludess 8-oxoguanine from both DNA and RNA. hMTH1-overexpresing mice have significantly lower steady-state levels of 8-oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age-dependent accumulation of DNA 8-oxoguanine that occurs in the wild-type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1-Tg animals live significantly longer than their wild-type littermates [23648059]. Mouse
    N-acetyl-serotonin administration N-acetyl-serotonin (a melatonin precursor) administrated with drinking water increases anti-oxidant capacity of the brain and prolongs the mean lifespan by 20% of males but not females [11462771]. Mouse 0 to +20
    Msra knockout Msra homozygous knockouts exhibit a 40% shorter lifespan than wild-type or heterozygotes (C57BL/6J). Msra -/- mice have enhanced sensitivity to oxidative stress, accumulatehigher levels of protein cabronyls, and demonstrate and atypical walking pattern [11606777]. Mouse -40
    Mir20a Overexpression Overexpression of MiR-20a in mouse embryonic fibroblasts induces senescence by lowering Lrf (a transcriptional repressor of the Mdm2 inhibitor p19ARF [15662416; 9529248]) protein levels and in turn increasing p19ARF levels [18596985]. Mouse
    Methionine restriction A diet with reduced methionine content extends lifespan and increases body fat [15924568]. Mouse
    Metformin treatment Chronic treatment of female transgenic HER-2/neu mice with metformin slightly decreases food consumption but fails to reduce body weight or temperature, slows down age-related rise in blood glucose and triglycerides level, as well as the age-related switch-off of estrous function, prolongs mean lifespan by 8% (p < 0.05), the mean lifespan of last 10% survivors by 13.1% and maximum lifespan by 1 month. Metformin treatment significantly decreases incidence and size of mammary adenocarcinomas and increases the mean latency of the tumors [16125352]. Chronic treatment of female outbred SHR mice with metformin slightly modified food consumption but decreases the body weight after the age of 20 months, slows down the age-related switch-off of estrous function, increases mean lifespan by 37.8% mean lifespan of the last 10% survivor by 20.8%, and maximum lifespan by 2.8 month (+10.3%). Treatment with metformin fails to influence blood estradiol concentration and spontaneous tumor incidence in female SHR mice [18728386]. In female SHR mice, metformin increases lifespan lifespan and postpones tumors when started at young and middle but not at old age. Chronic treatment of female outbred SHR mice with metformin started at the age of 3, 9 or 15 months decreases body temperature and postpones age-related switch-off of estrous function. Treatment with metformin started at the age of 3 months increases mean lifespan by 14% and maximum lifespan by 1 month. Treatment started at the age of 9 months insignificantly increases lifespan by only 6%, whereas the treatment started at the age of 15 months fails to increase lifespan. The mean lifespan of tumor-free mice increases by 21% (started at 3 months), by 7% (started at 9 months) and in contrast is reduced by 13% (started at 15 months). If started at 3 and 9 months, metformin delays the first tumors by 22% and 25%, correspondingly [21386129]. Transgenic FVB/N female mice carrying HER-2/neu mammary cancer gene receiving metformin with drinking water 5 days a week starting from the age of 2 months exhibit a slight reduced food consumption without change in water consumption and dynamics of weight gain. Their mean lifespan increases by 8% in 10% of the long-lived mice it is prolonged y 13.1% and the maximum lifespan is prolonged by 1 month. The total incidence of mammary adenocarcinoma and their multiplicity does not change under the effect of metformin, while the latency of tumor development increases and the mean diameter of tumors decreases [16224592]. Chronic treatment of inbred 129/Sv mice with metformin slightly modifies food consumption but fails to influence the dynamics of body weight, decreases by 13.4% the mean lifespan of make mice and slightly increases the mean lifespan of female mice (by 4.4%). Metformin treatment fails to influence tumor incidence in male 129/Sv mice, decreases by 3.5 times the incidence of malignant neoplasms in female mice while somehowwhat stimulate formation of benign vascualr tumors in the latter [21164223]. Mouse
    Melatonin supplementation Melatonin administrated with drinking water increases anti-oxidant capacity of the brain and prolongs the mean lifespan by 20% of males but not females [11462771]. Mouse 0 to +20
    Lep knockout Lep knockout results in ob/ob mice which eats excessively and becomes profoundly obese. ob/ob mice live shorter on ad libitum, but achieve a lifespan similiar to control levels under DR, yet their precentage of body fat is much greater that that of controls [6608731]. Mouse
    Lamp2a expression restoration Maintaining the amount of the Lamp2a (in a double transgenic mice) specifically in the liver at levels found in young adults prevents age-dependent decrease in receptor abundance at the cellular and organ levels. In this mice CMA activity is maintained until advanced ages which results in preservation of the autophagic activity and is associated with lower intracellular accumulation of damaged proteins, better ability to handle protein damage and improved organ function [19115216; 18690243]. Lamp2a expression restored not only CMA but also macrophagy and proteasomal degradation to the level observed in young liver as well as youthful mitochondrial function and cellular ATP abundance and overall youthful liver functions [18776878]. Mouse
    Klotho overexpression Klotho overexpression leads to lifespan extension [16123266]. Mouse
    Klotho disruption Klotho disruption results in infertility and signs of premature ageing such as a short lifespan, arteriosclerosis, skin atrophy, osteoporosis, and emphysema. Klotho is highly expressed in brain and kidney [10631108]. The circulating form of Klotho binds to a cell-surface receptor and represses intracellular signals of insulin and IGF1. Perturbing insulin and IGF1 alleviates the aging-like phenotypes in Klotho-deficient mice [16123266]. kl/kl mice initially develop normally but exhibit growth retardation starting at 3-4 weeks of age. Their average lifespan is 61 days (none more than 100 days). These mice gradually become inactive, with reduced stride length, atrophic genital organs, thymus atrophy, arteriosclerosis (medial calcification and intimal thickening), ectopic calcification in arterial walls, osteroposis, skin atrophy, impaired maturation of gonadal cells, emphysema, reduced growth hormone-producing cells in the pituitary gland, slight hypercalcemia, and hyperphosphatemia [9363890]. kl/kl mice have decreased insulin production and increased insulin sensitivity [11016890]. Mouse
    K5-Tert overxpression Overexpression of telomerase results in a high cancer incidence but also a modest mean (10%) and maximum lifespan extension accompanied by a lower incidence of some age-related degenerative diseases, in particular those related to kidney function and germline integrity [15688016]. Mouse +10
    Intermittent fasting Intemittent fasting diet increases survivorship and improves insuli sensitivity of normal males, but fails to affect either parameter in GHRKO mice [19747233]. Mouse
    Igf1r knockout Homozygous null mutation of Igf1r is lethal at birth [8402901]. Mice heterozygous for IGF1R live 26% longer. Female Igf1r(+/-) mice have 33% longer mean lifespan, whereas male mice exhibit an increase in mean lifespan of 16% (not statistically significant). Long-lived Igf1r+/- mice do not develop dwarfism, have normal energy metabolism, food and water intake, unaffected nutrient uptake, physical activity, glucose regulation, serum insulin and glucose, fertility and reproduction [12483226]. Heterozygous Igf1r mutants are more resistant to paraquat and mouse embryonic fibroblasts derived from them are more resistant to hydrogen peroxide [8402901]. Mouse +16 to 33
    Homozygous Shc1 knockout Homozygous Shc1 knockout mice have an 28% increase in mean lifespan [10580504]. p66shc-/- cells are more resistant to apoptosis induced by hydrogen peroxide and UV light. p66shc-/- mice aremore restante to oxidative stress induced by paraquat [10580504]. Mouse +28
    Interventions are an extension of GenAge and GenDR.