Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    Coq7 demethyl-Q 7 Mice heterozygous in Coq7 live about 15 to 30% longer than controls [16195414]. Transgenic overexpression of mouse Coq7 reverts the extended lifespan of clk-1 mutants in C. elegans [11511092]. House mouse
    Ctf1 Cardiotrophin 1 Absence of Ctf1 is associated with decreased arterial fibrosis, stiffness mad senescence and increased longevity. Ctf1-null mice have a decrease in arterial stiffness and decrease in levels of inflammatory, apoptotic and senescence, whereas telomere-linked and DNA repair proteins as well as antioxidant enzyme activities are increased. The median lifespan of Ctf1-null mice is increased by 5 month (18%) [23172930]. Wild-type and Ctf1-null mice exhibit an increase of senescence markers (p53, Mdm2, p21, and p16) with age but are lower in Ctf1-null mice. Ctf1-null mice have a diminished vascular NFκB signaling, lower inflammation and oxidative stress and reduced senescence. Ctf1-null mice have a 12% increase in body weight, 130% increased adiponectin levels and 51% decreased leptin concentrations [23172930]. Treatment of cells with CT-1 increases SA-β-galactosidase, and apotosis and senescence makers (p53, p21 and p16), without modifying Mdm2 expression [23172930]. House mouse
    DDS 4,4'-diaminodiphenylsulfone In nematode treatment with DDS extends the lifespan [20974969]. DDS causes the delay of aging and decreases the level of a mitochondrial complex as well as lowers oxygen consumption and enhances oxidative stress resistance [20974969]. Pyruvate kinase is bound and inhibited by DDS in vitro and in vivo [20974969]. Hansen disease patients in Korea, who usually have taken DDS for several decades, have a longer lifespan in spite of their socioeconomic disadvantages [19084552]. House mouse
    Dgat1 Diacylglycerol O-acyltransferase 1 Deficiency in Dagat1 promotes leanless and extends mean, median and oldest 10% survival by 23, 26 and 9% without limiting food intake [22291164]. House mouse
    Drd4 Dopamine D4 Receptor Drd4 knockout mice, when compared with wild-type and heterozygous mice, display a 7 - 9.7% decrease in lifespan, reduced spontaneous locomotor activity, and no lifespan increase when reared in an enriched environment [23283341]. House mouse
    Efemp1 Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 Efemp1 knockout mice exhibited an early onset of aging-associated phenotypes including a 20% shorted median lifespan and 30% shorter maximum lifespan, decreased body mass, lordokyphosis, reduced hair growth, and atrophy [17872905]. House mouse
    Ercc2 Excision repair cross-complementing rodent repair deficiency, complementation group 2 Mutations in Ercc2 increases cancer incidence and appear to accelerate ageing. Homozyogus mutation of Ercc2 results in an extreme shortening (71%) of lifespan (mean lifespan = 7 months) relative to wild-type (mean lifespan = 24 months) [de Boer et al. 2002]. The shortened lifespan of the mutant mouse is accompanied by symptoms of premature aging including osteoporosis, early greying, cahexia, and infertility. It provides a mouse model for the britte hair disorder trichothiodystrophy (TTD) as it phenotypes include britte hair, UV sensitivity, and developmental defects [9651581]. House mouse
    Ercc4 Excision repair cross-complementing rodent repair deficiency, complementation group 4 ERCC4-ERCC1-deficient mice exhibit signs of premature aging [17183314]. House mouse
    Fgf21 Fibroblast growth factor-21 Overproduction of Fgf-21 increases mean lifespan of males by 30% and that of females by 39% [23066506]. Mice overproducing Fgf21 are lean throughout their lives and remain lean even while eating slightly more than wild-type mice. Fgf21 overproducers tend to be smaller than wild-type mice and female mice were infertile. Although Fgf21 overproducers have significantly lower bone density than wild-type, Fgf21-abundant mice exhibit no ill effects from the reduced bone density and remain active into old age without any broken bones. Fgf21 seems to provide its health benefits by increasing insulin sensitivity and blocking the growth hormone/insulin-like growth factor-1 signaling. Fgf21 acts as a hormone, is secreted by the liver during fasting and helps the body to adapt to starvation. House mouse
    Fgf23 Fibroblast growth factor 23 Fgf23 knockouts have a short lifespan and display premature aging-like symptoms including kyphosis, muscle wasting, osteopenia, emphysema, uncoordinated movement, atherosclerosis, and atrophy of the intestinal villi, skin, thymus, and spleen [16436465]. Lack of Fgf23 activities results in extensive premature aging-like features and early mortality of Fgf-23(-/-) mice, while restoring the systemic effects of FGF-23 significantly ameliorates these phenotypes, with the resultant effect being improved growth, restored fertility, and significantly prolonged survival of double mutants [18729070]. House mouse
    Foxm1 Forkhead box M1 Deletion of Foxm1 causes age-related deterioration in liver regeneration. Increased hepatocyte expression in 12-month-old (aged) transgenic mice of Foxm1b alone is sufficient to restore hepatocyte proliferation to levels found in 2-month-old (young) regenerating liver [14647066]. House mouse
    Foxo3 House mouse
    Fxn frataxin Disruption results in reduced lifespan, increased oxidative stress, impaired respiration, and the development of hepatic tumors [16278235]. House mouse
    Gdf11 growth differentiation factor 11 GDF11 is a circulating factor in young mice that declines with age. Treatment of old mice to restore GDF11 to youthful levels recapitulated the of young-old parabiosis and reverses age-related hypertrophy. House mouse
    Gh Growth hormone Overexpression of GH is associated wtih markedly reduced lifespan and various indices of premature aging [8100276]. Transgenic mice overexpressing bovine GH1 are bigger than controls and display signs of premature aging such as a shortened lifespan, glomerulosclerosis and glomerulonephritis, increased astrogliosis, and early onset of age-related changes in cognitive function [14583653]. House mouse
    Gh growth hormone 1 Overexpression of a growth hormone antagonist (a mutated growth hormone that competes with the endogenous one) in mice has no effect on lifespan [12933651]. House mouse
    Ghr Growth hormone receptor Ghr knockouts (the so called Laron mice) are dwarfs with significantly extended lifespan by 40-50% [12933651]. Ghr-/- mice are significantly longer lived as Ghr+/+ or Ghr+/- mice (by 40-50%) in both females and males [10875265; 19370397]. 30% DR fails to affect overall survival, average or median long-lifespan of Growth hormone receptor knockout (GHRKO) mice and increased maximal lifespan only in females. Insulin sensitivity in GHRKO mutants is greater than in wild-type and is not further increased by DR [16682650]. Intermittent fasting also fails to extend the long lifespan of GHRKO mice [19747233]. Lifespan of mice with a deletion in the Ghr gene live almost 5 years [21123740]. In C57BL/6J this mutation increases life expectancy by 16 to 26% depending on gender [12933651] and in mice of mixed genetic background the increases amounted to 36-55% [9371826]. Serum levels of GH are elevated in mutant mice [9371826] and mutants are smaller than wild-type. IGF-1 and IGFBP-3 levels are also reduced in Ghr mutant mice [10875265]. The age-associated decline in memory retention is delayed in Ghr mutants [11336996]. Overexpression of a growth hormone antagonist (a mutated growth hormone that competes with the endogenous one) has no effect on lifespan [12933651]. House mouse
    Ghrhr Growth hormone releasing hormone receptor Homozygosity for the Ghrhr(lit) knockout mutation (called little mouse) lowers plasma growth hormone levels, impairs growth and increases lonegevity about 20% [11371619]. Lit homozygous animals are smaller than normal mice [1270792] and their pituitary is defective in growth hormone and prolactin [978118]. House mouse
    Gnas GNAS (guanine nucleotide binding protein, alpha stimulating) complex locus Mutants in which the Gnasxl transcript is deleted from the Gnas gene, have a high metabolism and are very lean despite consuming more food. The mutant appears to have fewer glial cells in the suprachiasmatic nucleus where the circadian clock is controlled [22253771]. House mouse
    Gpx4 Glutathione peroxidase 4 Heterozygous knockouts have a 7% increase in median lifespan. House mouse
    Gsta4 glutathione S-transferase, alpha 4 Gsta4 null mice, had impaired 4-hydroxynonenal detoxification, but extended average lifespan. House mouse
    Hells helicase, lymphoid specific A hypomorphic deletion of helicase domains 3, 4 and part of 2, leads to expression of a C-terminal truncated Hells protein causing an extremely short lifespan. with 60% of homozyogous mutants dying after birth and remaining 40% surviving up to seven weeks (around 25 days) [15105378]. Hells disruption results in genomic hypomethylation, de-repression of silenced genes, and premature aging, characterized by decreased proliferation, increased replicative senescence, and altered expression of Bmi-1 and p16INK4a. Hells mutant exhibit significant hypoglycemia, low birth weight and growth retardation, and signs of premature aging such as greying hair and balding, reduced fat deposition, unstable gait, cachexia, and kyphosis [15105378]. House mouse
    HNRNPD eterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) HNRNPD controls inflammation by turning off the inflammatory response to stop the onset of septic shock. Cessation of inflammatory cytokine respisne is mediated partly through cytokine mRNA degradation facilitated by RNA-binding proteins, including HNRNPD. HNRNPD deletion leads to accelerated aging as evidenced by strinking telomere erosion, markedly increased DNA damage repsosne at telomere ends, pronounced cellular senescence and rapid premature aging that increases with successive generations. HNRNPD which is a family of four related genes also maintains the integrity of chromosomes by activating telomerase, because HNRNPD strongly activates the transcription promoter for Tert [Pont et al., 2012]. House mouse
    htr1b 5-hydroxytryptamine (serotonin) receptor 1B Knockout mice displayed a decreased lifespan and early age-related motor decline. House mouse
    Igf1 Insulin-like growth factor 1 (somatomedin C) Cardiac specific overexpression of Igf1 results in a 23% increase in median lifespan, though no increase in maximum lifespan [17973971]. House mouse
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit