Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    SAG101 senescence-associated protein 101 Antisense RNA interference of SAG101 in transgenic plants delays the onset of leaf senescence for approximately 4 days, whereas chemical induced overexpression of SAG101 causes precocious senescence in both attached and detached leaves of transgenic plants [11971136].
    PLD alpha Antisense suppression of PLD alpha retards abscisic acid- and ethylene-induced senescence. Leaves detached from PLD alpha-deficient transgenic plants when inbutated in abscisic acid and ethylene exhibit a slower rate of senescence that those from wild-type and transgenic controls. PLD alpha deficient strains are associated with retardation of senescence as evidenced by delayed leaf yellowing, lower ion leakage, greater photosynthetic activity, and higher content of cholorophyl and phospholipids [9437863]. Antisense suppression of PLD alpha does not affect natural plant growth and development [9437863].
    WRKY6 WRKY transcription factor 6 Deletion of the WRKY6 promoter results in defects in root and leaf cell senescence [11722756]. WRKY6 is a transcription factor involved in controlling processes related to senescence and pathogen defence [11722756] and is a positive regulator of PR1 expression [12000796]. WRKY6 is strongly expressed during senescence [11722756].
    gpa2 Guanine nucleotide-binding protein alpha-2 subunit gpa2 (alias git8) encodes the alpha subunit of a heterotrimeric G protein, which acts downstream of Git3. Git8 activity accelerates aging and inhibits the lifespan-extending effect of DR. Constitutive active mutation of gpa2 decreases chronological lifespan under AL (2% glucose) and almost completely cancels out the lifespan extending effect of DR (0.2% glucose) [19266076]. Fission yeast
    pka1 cAMP-dependent protein kinase 1 pka1 knockouts exhibits a three-fold increase in chronological lifespan with up to 187% longer maximum lifespan [16822282]. Deleting ser/thr cAMP-activated protein kinase pka1 extends chronological lifespan under normal condition, but there is no additive effect with DR [20075862]. Fission yeast
    RPL6A Ribosomal Protein of the Large subunit 6A Deletion of RPL6A decrease mean replicative lifespan by 25% in the alpha strain [18340043; 18423200], but increases mean replicative lifespan by 40% in the remade strain. Its deletion non-significantly increases mean replicative lifespan in the ORF collection [22377630]. Budding yeast
    SCP1 S. cerevisiae CalPonin 1 Increasing actin dynamics by deletion of SCP1, encoding an actin bundling protein, increases replicative lifespan by 67% as well as chronological lifespan by 88%, whereas its overexpression leads to elevuated ROS levels and reduces chronological lifespan (in KAY446 strain) [15024029]. SCP1 is related to mammalian SM22/transgelin which is induced during senescence [9570922]. Budding yeast
    SNF4 Sucrose NonFermenting 4 Deleting SNF4 extends replicative lifespan by 10-20% in S288C strain [10921902]. Budding yeast
    CLN3 CycLiN 3 Overexpression shortens chronological lifespan together with age-dependent increases in genome instability and apoptosis. While around 80% of wild-type cells are alive almost non CLN3 overexpressers are alive (under condition that avoids adaptive regrowth) [17710147]. Budding yeast
    FBP1 Fructose-1,6-BisPhosphatase 1 Deletion of FBP1 increases survival during the first 15 days during chronologocal aging, but does not increase chronological lifespan. FBP1 deletion reduces production of reactive oxygen species while overexpression of FBP1 shortens chronological lifespan [16199065]. Budding yeast
    YDC1 Yeast DihydroCeramidase 1 Overexpression of YDC1 decreases chronological lifespan by 40% [19059240] Budding yeast
    GTS1 Glycine Threonine Serine repeat protein 1 Deletion or overexpression of GTS1 shortens replicative lifespan significantly and slightly, respectively (wt:26, Delta:16 and OE:24) [8573138]. Budding yeast
    SNF1 Sucrose NonFermenting 1 Forced overexpression (high-copy 2 micro expression) of SNF1 shortens replicative lifespan to 75% of wild-type and is accompanied by signs of premature ageing, including progressive sterility, enlargement and fragmentation of the nucleus, redistribution of Sir3 to the nucleus, and more rapid accumulation of extrachromosomal rDNA circles [10921902]. SNF1 overexpression also reduced chronological lifespan [19164565]. Deletion of SNF1 increases replicative lifespan by 50% in the alpha strain [19030232], but decreases chronological lifespan [21076178]. Budding yeast
    OSH3 OxySterol binding protein Homolog 3 Mean replicative lifespan of OSH3 deletion mutant is not significant different from wild type. Overexpression of OSH3 with the promoter of VAC8 shortens mean replicative lifespan ad promotes vacuolar fusion [Xia et al. unpublished]. Budding yeast
    HES1 Homologous to kES1 1 Deletion of HES1 (alias OSH5) extends replicative lifespan and is non-additive with moderate DR. Elevation of OSH5 levels by an ERG6 promoter reduces mean, median and maximum replicative lifespan by 25, 18 and 29%. HES1 is required for the longevity effect of DR, Perg6-OSH6, Perg6-ERG2 and Perg6-OSH7 (genetic mimetics of DR). Hes1 is upregulated in response to sterol down-regulation including DR. Deletion of OSH5 delays different steps of endocytosis, a sterol-requireing process [Xia et al., unpublished]. Perg6-OSH6 osh5 double mutant have a lifespan significantly shorter than that of Perg6-OSH6 [Xia et al. upublished]. Budding yeast
    AFG3 ATPase Family Gene 3 Deletion of the mitochondrial AAA protease AFG3 increases replicative lifespan by 20% in the alpha and a strains [18340043], but decreases chronological lifespan by 37 - 51% in diploid cells [21447998]. AFG3 deletion changes mean, median and maximum lifespan by 15 to 26% 17 to 30% and -25 to +58%, respectively. AFG3 deletion leads to reduced cytoplasmic mRNA translation and its lifespan extension is independent of Sir2 and Hac1, but requires Gcn4. AFG3 deletion further extends the lifespan of cell deficient in both SIR2 and FOB1, but fails to extend the lifespan of dietary restricted cells or cells lacking GCN4. Gcn4 protein levels are increased in afg3 mutants. The deletion of AFG3 fails to extend the replicative lifespan in the W303AR strain. AFG3 deletion does deletion extend the replicative lifespan at 15°C. Budding yeast
    SAM1 S-adenosylmethionine synthetase, catalyzes transfer of the adenosyl group of ATP to the sulfur atom of methionine; one of two differentially regulated isozymes (Sam1p and Sam2p) Deletion of SAM1 increases replicative lifespan by 20% in the alpha strain and 15% in the a strain [18340043]. Budding yeast
    CKA2 CK2 subunit 2 CKA2 deletion approximately doubles mean chronological lifespan under starvation/extreme DR in BY4741 also increases as well as as heat-shock resistance in SDC medium in the W303-1A and DBY746 genetic backgrounds [20657825]. Budding yeast
    CKB2 Casein Kinase Beta' subunit Lack of Ckb2 promotes a modest but significant chronological lifespan extension and marked increase in yeat resistance [20657825]. Budding yeast
    CUP9 Homeodomain-containing transcriptional repressor of PTR2, which encodes a major peptide transporter; imported peptides activate ubiquitin-dependent proteolysis, resulting in degradation of Cup9p and de-repression of PTR2 transcription Deletion of CUP9 increases replicative lifespan by 30% in the alpha and a strains [18340043]. Although CPU9 was identified as a potential long-lived mutant strain in a bar-code screen, the chronological lifespan of CUP9 deletion mutant is not significantly different from than of wild-type under starvation/extreme DR [20657825]. Budding yeast
    TRM9 TRna Methyltransferase 9 TRM9 deletion almost triples mean chronological lifespan under starvation/extreme DR, increases heat resistance, but reduces resistance to acetic acid. Similar effect were present in the BY746 background in SDC medium [20657825]. Budding yeast
    RPL12B Ribosomal Protein of the Large subunit 12B Deletion of RPL12B increases mean replicative lifespan by 20% in the alpha strain [18423200] and by 22% in the remade strain, but increases non-significantly the mean replicative lifespan by 13% in the ORF collection [22377630]. RPL12B mutation promotes mean chronological longevity extension and heat-shock resistance but reduces acetic acid resistance under starvation/extreme DR. In DBY746 mutation of RPL12B almost doubles mean chronological lifespan in SDC medium and increases heat-shock resistance [20657825] Budding yeast
    PMR1 High affinity Ca2+/Mn2+ P-type ATPase required for Ca2+ and Mn2+ transport into Golgi; involved in Ca2+ dependent protein sorting and processing; mutations in human homolog ATP2C1 cause acantholytic skin condition Hailey-Hailey disease Deletion of PMR1 increses the replicative lifespan by 40% in the alpha strain and by 15% in the a strain. Overexpression of PMR1 extends the lifespan [21918615]. Budding yeast
    BRE5 BREfeldin A sensitivity 5 Deletion of BRE5 increases mean replicative lifespan by 30% [16293764] and mean chronological lifespan in diploid cells [21447998] Budding yeast
    CCR4 Carbon Catabolite Repression 4 Deletion of CCR4 increases mean chronological lifespan by 20 - 41% (20, 33, 41) in diploid cells [21447998]. In W303R CCR4 deletion shortens replicative lifespan by approximately 80% and results in temperature sensitivity that is suppressed by SSD1-V. SSD1-V partially suppresses the short-lifespan of ccr4 mutant. CCR4 mutation is synthetically lethal in combination with deletion of MPT5 in the absence of SSD1-V [11805047]. Budding yeast
    • Page 1 of 20
    • 25 of 478 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit