Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Types: + -
  • symbol name observation species
    MSN2 Multicopy suppressor of SNF1 mutation 2 Deletion of MSN2 and MSN4 extends replicative lifespan and is further extended by cyr1::mTn [14741356]. Deletion of MSN2 and MSN4 does not significantly decrease chronological lifespan under AL, but attenuates chronological lifespan extension by water starvation and 0.5% glucose restriction [18225956] as well as cancels out lifespan extension of cyr1::mTn [14741356] and decreases chronological lifespan extension of ras2 deletion mutant [12586694]. Simultaneous deletion of MSN2 and MSN4 has no effect on chronological lifespan, but prevents lifespan extension by RAS2 deletion [12586694]. msn2 msn4 has no effect on replicative lifespan in PSY316, and does not prevent lifespan extension by DR [11000115] or by high osmolarity [12391171]. Budding yeast
    MSN4 Multicopy suppressor of SNF1 mutation 4 Deletion of MSN2 and MSN4 extends replicative lifespan and is further extended by cyr1::mTn [14741356]. Deletion of MSN2 and MSN4 does not significantly decrease chronological lifespan under AL, but attenuates chronological lifespan extension by water starvation and 0.5% glucose restriction [18225956] as well as cancels out lifespan extension of cyr1::mTn [14741356] and decreases chronological lifespan extension of ras2 deletion mutant [12586694]. Simultaneous deletion of MSN2 and MSN4 has no effect on chronological lifespan, but prevents lifespan extension by RAS2 deletion [12586694]. msn2 msn4 has no effect on replicative lifespan in PSY316, and does not prevent lifespan extension by DR [11000115] or by high osmolarity [12391171]. Budding yeast
    NNT1 Nicotinamide N-methylTransferase 1 Deletion of NNT1 decreases mean and maximum lifespan by 9 and 19%. 0.5% glucose DR extends the mean and maximum lifespan of NNT1 deletion mutants by 35 and 40%. Overexpression of NNT1 by 5-fold extends mean and maximum replicative lifespan by 18 and 23%, which is approximately of the same magnitude as the lifespan extension obtained from DR. DR in NNT1 overexpression mutant fails to significantly affect the lifespan and only results in extended mean lifespan by 12% and reduced maximum lifespan by 11%. NNT1 overexpression increases rDNA silincing, whereas deletion decreases rDNA silencing. Overexpression of human nicotinamide N-methyltransferase also increases rDNA silencing [12736687]. Budding yeast
    NYV1 New Yeast V-SNARE 1 Deletion of NYV1 cancels out replicative lifespan extension of 0.5% glucose restriction and results under DR also into a shorter replicative lifespan than under AL [18690010; 22622083]. Thus, NYV1 deletion blocks DR-lifespan prolongation [18690010]. Budding yeast
    RPL31A Ribosomal Protein of the Large subunit 31A Deletion of RPL31A increases mean replicative lifespan by 45% [16293764]. Mean replicative lifespan increases by 35% in the alpha strain and 50% in a strain [19030232; 18423200]. Mean replicative lifespan of the RPL31A deletion mutant increases by 35% in the ORF collection and by 29% in the remade strain [22377630]. RPL31A deletion increases significantly replicative lifespan [17174052]. Deletion of RPL31A extends replicative lifespan and is not further extended by 0.05% glucose restriction [18423200]. Budding yeast
    SIR2 Silent Information Regulator 2 Deletion of SIR2 shortens replicative lifespan by approximately 30%. Integration of a second copy of SIR2 into the wild-type strain leads to an extension of replicative lifespan by around 35% in W303R strain [10521401]. Deletion of SIR2 causes genomic instability at rDNA array [2647300] and shortens replicative lifespan by 50% [11000115]. 0.5% glucose restriction fails to increase the short lifespan of sir2Delta [11000115] probably duo to hyperaccumulations of extrachromosomal rDNA circles (ERCs) [16311627]. 0.1% glucose restriction extends replicative lifespan of sir2 mutants [12213553]. 0.5, 0.1 and 0.05% glucose restriction are able to increase lifespan of sir2;fob1 double mutant to a greater extent than in wild-type [15328540]. 0.05% glucose restriction further extends replicative lifespan of SIR2 overexpression mutant [15328540]. Sir2 blocks extreme chronological lifespan extension as the lack of Sir2 along with DR and/or mutations in the yeast AKT homolog, Sch9, or Ras pathways causes a dramatic chronological lifespan extension (6-fold) [16286010]. Sir2 inhibits formation of ERCs and acts on histones as well metabolic enzymes among others. Overexpression extends replicative lifespan in several strains, but not in PSY316 [15684413]. Chronological lifespan of sir2 deletion mutant is significantly extended compared with wild-type in water (extreme DR) but not in saturated cultures containing 2% glucose (ad libitum). SIR2 mutants are defective for telomere [1913809] and HM silencing [6098447; 3297920]. have increased rDNA recombination [2647300] and a loss of rDNA silencing [9009207; 9009206]. Budding yeast
    SUR4 SUppressor of Rvs161 and rvs167 mutations 4 Deletion of SUR4 cancels out replicative lifespan extension of 0.5% glucose DR [18690010]. Budding yeast
    RPD3 Reduced Potassium Dependency 3 Deletion of the histone deacetylase gene RPD3 extends lifespan by 41%, independently of an intact Sir silencing complex (in the short lived YSK661 strain) [10512855]. Deletion of RPD3 extends replicative lifespan and there was no additive effect by neither 0.1% glucose nor amino acid restriction [12213553]. RPD3 deletion increases rDNA silencing in a partially SIR2-dependent manner [10082585]. Its effects on chromatin functional state were evidenced by enhanced silencing at the three known heterochromatic regions in the genome, the silent mating type (HM), subtelomeric, and rDNA loci, which occurred even in the absence of SIR3 [10512855]. Budding yeast
    MXR2 peptide Methionine sulfoXide Reductase 2 Deletion or overexpression of MXR2 (alias MsrB) has no effect on replicative lifespan under normal growth conditions. Simulatonous deletion of MXR2 together with MXR1 dramatically reduces replicative lifespan by 63%. Overexpression of MXR2 under DR conditions extends replicative lifespan by 120% [15141092]. Budding yeast
    OSH6 OxySterol binding protein Homolog 6 Elevation of OSH6 levels by an ERG6 promoter extends mean, median and maximum replicative lifespan by 39, 52 and 18% which is non-additive with 0.5% glucose restriction. It also extends the lifespan of NYV1 mutant [Geber et al., unpublished]. The long lifespan of Perg6-OSH6 is not further extended by deletion of TOR1 [22622083]. OSH6 overexpression decreases total cellular sterol content and reduces Lst8 protein levels. The CC domain of Osh6 is dispensable for longevity. Deletion of the CC domain leads Osh6 to the late endosome. [Fusheng Tang, personal communication]. OSH6 deletion does not affect lifespan under normal conditions, but it abrogates the lifespan extension by 0.5% glucose restriction [Xia et al. unpublished]. Perg6-OSH6 osh5 double mutant have a lifespan significantly shorter than that of Perg6-OSH6 [Xia et al. upublished]. Budding yeast
    SRX1 SulfiRedoXin 1 Extra copy of SRX1 counteracts age-related hyperoxidation of Tsa1 and extends replicative lifespan by 15 - 20% in a TSA1-dependent manner. Replicative lifespan extension in sir2;fob1 double mutant by DR is reduced by SRX1 deletion. Wild-type cells require SRX1 to fully extend lifespan. DR fails to further extend replicative lifespan of cells carrying an extra copy of SRX1. Mutation in CDC35 (adenylate cyclase), a genetic mimetic of DR, is dependent on SRX1 to extend replicative lifespan [21884982]. Budding yeast
    FET3 FErrous Transport 3 FET3 mutation slightly shortens chronological lifespan under AL. Its chronological lifespan is not extended by 0.5% glucose or amino-acid DR [20421943]. FET3 is one of several iron related genes that are up-regulated in response to increasing strength of glucose DR [18679056]. Budding yeast
    FRE6 Ferric REductase 6 FRE6 deletion increases mean replicative lifespan by 14% and cancels out the lifespan extending effect of DR [22912585]. Budding yeast
    GTR1 GTp binding protein Resemblance 1 GTR1 deletion decreases mean and maximum replicative lifespan under AL by 36 and 51%, respectively, and cancels out the lifespan extending effect of DR [22912585]. Budding yeast
    GUP1 Glycerol UPtake 1 GUP1 deletion extends mean and maximum replicative lifespan by 32 and 30%, respectively, as well as chronological lifespan. DR-induced maximal replicative lifespan extension is not further increased by GUP1 deletion, while gup1 mutant displayed longer chronological lifespan under DR [21584246]. Budding yeast
    HHF1 Histone H Four 1 HHF1 deletion extends mean and maximum replicative by 45 and 69%, respectively, as well as chronological lifespan. Chronological lifespan extension by HHF1 deletion and DR is non-synergistic. DR appears to extend replicative lifespan more when combined with hhf1 mutation, whereas DR does not change hhf1-induced replicative lifespan extension, suggesting a positive interaction [21584246]. Budding yeast
    HSP12 Heat Shock Protein 12 HSP12 deletion slightly increases mean, medium, and maximum replicative lifespan by 24, 27, and 3% under AL, but totally abolishes the lifespan extending effect of moderate DR [Alan Morgan, personal communication; Herbert et al. in press]. HSP12 encodes a small heat-shock protein which mRNA levels increases in response to diverse environmental stresses (including heat-, osmotic-, and oxidative stress) [11102521; 10722658] and its protein levels are induced upon both DR and high osmolarity. However, HSP12 deletion has no effect on resistance to variety of stresses (including oxidative stress). Hsp12 is monomeric, has negligible in vitro protein chaperone activity, and is intrinsically unstructured/unfolded in water, but switches to a dynamic 4-helical conformation upon membrane binding. These all indicates that Hsp12 has membrane-stabilising "lipid chaperone" functions and while its low levels exerts some negative effects on lifespan high levels of Hsp12 are required for DR-induced lifespan extension [Alan Morgan, personal communication; Herbert et al. in press]. Budding yeast
    HST2 Homolog of SIR Two (SIR2) 2 HST2 overexpression extends replicative lifespan. 0.5% glucose restriction does not increase lifespan of sir2;fob1;hst2 triple mutants [16051752]. DR increases lifespan of all four sir2;fob1;hstX(X = sirtuin) triple mutants [16741098; 17129213]. Budding yeast
    HXT17 HeXose Transporter 17 HXT17 mutation extends both replicative and chronological lifespan as well as cancels out DR-induced replicative and chronological lifespan extension. Mean and maximum replicative lifespan are extended by 27 and 49%, respectively [21584246]. Budding yeast
    NPT1 Nicotinate PhosphoribosylTransferase 1 Increased dosage of NPT1 increases SIR2-dependent silencing, stabilizes the rDNA locus and extends replicative lifespan by up to 60%. 0.5% glucose restriction does not significantly further increase replicative lifespan of NPT1 overexpression [11884393]. NPT1 deletion decreases replicative lifespan by 50% [17482543] as well as chronological lifespan [17110466]. Deletion of NPT1 shortens the lifespan in W303R. Replicative lifespan extension of cdc25-10 mutation (assumed to act as a genetic DR-mimetic) is cancelled out by NPT1 deletion [11000115]. NPT1 mutation results in loss of telomere and rDNA silencing [10841563], an effect that is likely caused by a loss of SIR2 activty due to decreased NAD levels. Mutation of NPT1 is synthetical lethal with mutation of QPT1 [11000115]. Budding yeast
    VPS21 Vacuolar Protein Sorting 21 Lack of VPS21 reduces lifespan under starvation conditions to a level similiar to that of wild-type cells incubated in synthetic complete medium and therefore blocked the lifespan-extending effect of DR [20657825]. Budding yeast
    VPS8 Vacuolar Protein Sorting 8 Lack of VPS8 reduces lifespan under starvation conditions to a level similiar to that of wild-type cells incubated in synthetic complete medium and therefore blocked the lifespan-extending effect of DR [20657825]. Budding yeast
    LAT1 LAT1 is suggested to play a role in lifespan extension of DR. Deleting LAT1 abolishes replicative lifespan extension induced by 0.5% and 0.05% glucose restriction. In contrast, overexpressing Lat1 extends replicative lifespan, and this lifespan extension was not further increased by 0.5% glucose restriction. Similar to DR, replicative lifespan extension by LAT1 overexpression largely requires mitochondrial respiration [17200108]. Overexpressing LAT1 extends lifespan (20% mean lifespan increase) and this lifespan extension is not further increased by DR. Similar to DR, lifespan extension by Lat1 overexpression largely requires mitochondrial respiration indicating mitochondrial metabolism plays an important role in DR. Interestingly, LAT1 overexpression does not require the Sir2 family to extend lifespan. Lat1 is also a limiting longevity factor in non-dividing cells in that overexpressing LAT1 extends cell survival during prolonged culture at stationary phase. Budding yeast
    PCK1 Phosphoenolpyruvate CarboxyKinase 1 Loss of Pck1 activity blocks chronological lifespan extension caused by water starvation. Knockout of PCK1 dramatically reduces chronological lifespan in both water (extreme DR) and glucose-containing medium. pck-1-K514Q mutation which abrogates enzymatic activity of Pck1, just like SIR2 deletion, extends chronological lifespan in water. Deletion of SIR2 does not alter the lifespan of PCK1 deletion mutant, pck1-K514R, and pck1-K514Q mutants [19303850]. Budding yeast
    NFU1 NifU-like protein 1 NFU1 mutation slightly shortens the chronological lifespan under AL and the chronological lifespan of NFU1 mutants is not extended by 0.5% glucose DR [20421943]. Budding yeast
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit