Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    C07A9.2 RNA interference of C07A9.2 decreases median lifespan by 26% in wild type animals, 37% in a daf-2 background and 15% in daf-2/daf-16 double mutants [18006689]. Nematode
    C11H1.3 RNA interference of C11H1.3 decreases median lifespan by 10% in wild type animals, 14% in a daf-2 background and 41% in daf-2/daf-16 double mutants [18006689]. Nematode
    C14A4.9 RNA interference of C14A4.9 decreases median lifespan by 14% in wild type animals and 41% in daf-2 mutants [18006689]. Nematode
    C26B9.3 RNA interference ofC26B0.3 decreases median lifespan by 12% in wild type animals, 68% in a daf-2 background and 17% in daf-2/daf-16 double mutants [18006689]. Nematode
    C29F9.2 RNA interference of C29F9.2 decreases median lifespan by 12% in wild type animals and 36% in daf-2 mutants [18006689]. Nematode
    C33H5.18 RNA interference of C33H5.18 decreases median lifespan by 44% in wild type animals, 77% in a daf-2 background and 14% in daf-2/daf-16 double mutants [18006689]. Nematode
    MPT5 Overexpression of MPT5 from the ADH promoter extends replicative lifespan by about 20% in W303R [11805047] and by 25% in PSY142 [9150138], whereas the deletion of MPT5 shortens lifespan by about 50% [9150138; 7859289]. MPT5 deletion decreases average chronological lifespan by 50%, which is rescued to the wild-type level by PKC1 overexpression [17172436]. MPT5 mutants are temperature sensitive [7845352], hypersensitive to mating pheromone [9154842], and null mutants exhibit increased silencing at telomeres and decreased rDNA silencing [9584615]. Deletion of MPT5 is synthetical lethal with mutation of either SWI4, SWI6, or CCR4 in an ssd1-d background [11805047]. MPT5 overexpression suppresses the temperature phenotype of POP2 mutant [9504907]. MPT5 is required for relocalization of the SIR complex to the nucleolus in sir4-42 strain [7859289]. Budding yeast
    YIA6 Deletion of YIA6 decreases replicative lifespan by 30% in the a strain [18340043]. Budding yeast
    YOL092W Deletion of YOL092W decreases mean and maximum replicative lifespan by 36 and 21%, respectively. Lifespan of YOL092Y deletion mutants is extended by 0.5% glucose restriction [22912585]. Budding yeast
    TLC1 Overexpression of a truncated allele of TLC1 abrogates telomere silencing [7545955], shortened telomeres and extends replicative lifespan approximately by 20% [9275199]. Deletion of TLC1 might decrease replicative lifespan [Nugent et al., 1996]. Budding yeast
    YMR018W Deletion of YMR018W increases replicative lifespan by 35% in the alpha strain [18340043]. Budding yeast
    wis1 Constitutive active mutation of wis1 extends chronological lifespan and there is no further beneficial effect of DR [20075862]. Fission yeast
    LAT1 LAT1 is suggested to play a role in lifespan extension of DR. Deleting LAT1 abolishes replicative lifespan extension induced by 0.5% and 0.05% glucose restriction. In contrast, overexpressing Lat1 extends replicative lifespan, and this lifespan extension was not further increased by 0.5% glucose restriction. Similar to DR, replicative lifespan extension by LAT1 overexpression largely requires mitochondrial respiration [17200108]. Overexpressing LAT1 extends lifespan (20% mean lifespan increase) and this lifespan extension is not further increased by DR. Similar to DR, lifespan extension by Lat1 overexpression largely requires mitochondrial respiration indicating mitochondrial metabolism plays an important role in DR. Interestingly, LAT1 overexpression does not require the Sir2 family to extend lifespan. Lat1 is also a limiting longevity factor in non-dividing cells in that overexpressing LAT1 extends cell survival during prolonged culture at stationary phase. Budding yeast
    Cbs Ubiquitous or neuron-specific transgenic overexpression of Cbs enhances longevity in fully-fed animals. Cbs RNAi partially abrogates increased lifespan by DR, but has no effect on fully fed animals. Cbs upregulation is required for increased lifespan under low-nutrient conditions. Response of male flies to DR is muted in comparison with females. Adult-specific ubiquitous expression of Cbs is sufficient to increase female mean and maximum lifespan by 12 - 43% and 10%, respectively. Males, whose lifespan is relatively less affected by DR, exhibite a smaller, but still significant increase in lifespan by 7% upon Cbs overexpression. Neuronal overexpression also increases lifespan, albeit modestly (approximately 12% mean and 15% maximum lifespan extension), whereas overexpression in the fat body and in the gut has no effect [21930912]. Fruit fly
    SAG12 Introduction of a SAG12 via bacterial gene transfer (pSAG12:ipt) increases longevity. The gene results in enhanced production of the hormone Cytokinin which affects growth and development as well as stimulates cell division and thereby extends the lifespan. pSAG::ipt transgenic plants exhibit delayed leaf senescence, increased branching and reduced internodal length. The leaves and flowers of the pSAG12:ipt plants are reduced in size and display a more intense coloration [http://www.wissenschaft.de/wissenschaft/news/316062.html; http://www.biomedcentral.com/1471-2229/12/156/abstract; Garcia-Sogo et al. 2012].
    Sin3A Overexpression of Sin3A increases mean and maximum lifespan by 13% and 3%, respectively [22366109]. Fruit fly
    CG30427 Overexpression of CG30427 in males increases mean lifespan by 18% [22366109]. Fruit fly
    CG10383 Overexpression of CG10383 in males increases mean and maximum lifespan by 12% and 8%, respectively [22366109]. Fruit fly
    CG13890 Overexpression of CG13890 (DCI) throughout the whole body increases mean and median lifespan by 35 and 31%, but decreases maximum lifespan by 6%, increases stress resistant (to paraquat and starvation), consistently reduces the mortality rate across adult ages and reduces the lifespan extension of DR by 15% [22997544]. CG6783 overexpression increases the dFOXO nuclear localization in the fat-body. mRNA levels of dFOXO target genes l(2)efl and 4E-BP in the adult whole bodies increases in response to overexpression of CG6783 [22997544]. Fruit fly
    Wrn Mice lacking the helicase domain of the WRN ortholog exhibit many phenotypic features of Werner Syndrom, including a pro-oxidant status and a shorter mean lifespan. Mice with a deletion in the helicase domain [9789047] recapitulates most of the Werner syndrome phenotypes, including an abnormal hyaluronic acid excretion, higher reactive oxygen species levels, dyslipidemia, increased genomic instability, and cancer incidence. Wrn(Dehl/Dehl) mutant mice have a 10 - 15% decrease in their mean lifespan [12707040; 19741171]. House mouse
    mir-124 Loss of mir-124 increases reactive oxygen species formation and accumulation of the aging marker lipofuscin, reduces whole body ATP levels and results in reduction in lifespan [23075628]. Supplementation of vitamin C normalizes the reduced median lifespan of mir-124 mutants [23075628]. The expression of the conserved mir-124 in whole wrn-1 mutants (which premature age) is significantly reduced [23075628]. Nematode
    mir-58 mir-58(n4640) mutation decreases the mean lifespan by 20% [22482727]. Nematode
    mir-246 Mutating mir-246 decreases mean and maximum lifespan by 12%, while its overexpression increases mean and maximum lifespan by 6 and 5 - 14%, respectively [21129974]. Nematode
    mir-238 Mutating mir-238 decreases mean and maximum lifespan by 18 and 24% [21129974]. mir-238(n4112) mutation decreases mean lifespan by 20% [22482727]. Nematode
    mir-71 Loss and gain-of-function of mir-71 decreases and increases lifespan, respectively [21129974]. mir-71 mutants have a reduced lifespan with 40% decrease in mean lifespan, while extra copies of mir-71 extend the lifespan with an increase in lifespan by 15 - 25% [22482727], Loss of mir-71 function suppresses the long lifespan of glp-1(e2141) mutants [22482727], During adulthood mir-71 is strongly expressed in the intestine, body wall muscles and neurons. mir-71 is upregulated in aging adults [22482727], Nematode
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit