Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Types: + -
    Gene (1)  
  • symbol name observation species
    RAS1 Deletion in RAS1 increases mean (23%) and maximum (29%) replicative lifespan (in SP1) [8034612]. RAS1 deletion increases replicative lifespan by 15% in the alpha strain [19030232]. However, deletion of RAS1 slightly shortens chronological lifespan (in SP1) [12586694]. No lifespan extension results from overexpression of RAS1 (in SP1) [8034612]. Budding yeast
    YBR238C Deletion of YBR238C increases mean replicative lifespan by 25 to 34% in the alpha and a strains [16293764; 19030232]. Budding yeast
    IRC14 Deletion of IRC14 increases mean replicative lifespan by 14-22% [16293764]. IRC14 is a dubious ORF overlapping IDH2. Budding yeast
    YDR248C Deletion of YDR248C increases replicative lifespan by 20% in the alpha strain [19030232]. Budding yeast
    YDR307W Deletion of YDR307W increases replicative lifespan by 30% in the alpha strain [19030232]. Budding yeast
    YER186C Deletion of YER186C increases replicative lifespan by 30% in the alpha strain [19030232]. Budding yeast
    YER187W Deletion of YER187W increases replicative lifespan by 30% in the alpha strain [19030232]. Budding yeast
    YGL235W YGL235W increases replicative lifespan by 20% in the alpha strain [19030232]. Budding yeast
    YLR422W Deletion of YLR422W increases replicative lifespan by 25% in the alpha strain [19030232]. Budding yeast
    YMR010W Deletion of YMR010W increases replicative lifespan by 30% in the alpha strain [18340043]. Budding yeast
    SCH9 Transposon-mediated mutagenesis of SCH9, which encodes for a serine threonine kinase homologous to Akt/PKB, increases resistance to oxidants and thermal stress as well as extends chronological lifespan by 30%. SCH9 deletion increases chronological lifespan by up to threefold. Stress-resistance transcription factors Msn2/Msn4 and protein kinase Rim15 are required for this life-extension. Deletion of the mitochondrial antioxidant enzyme superoxide dismutase gene SOD2 prevents the increased chronological lifespan caused by SCH9 deletion [11292860]. Mutations that decrease the activity of the Ras/Cyr1/PKA pathway also extend longevity and increase stress resistance by activating transcription factors Msn2/Msn4 and Sod2 [12855292]. SCH9 deletion mutants exhibit more than 3-fold extension of chronological lifespan. By day 9 of medium depletion all the wild-type cells were dead while 50% sch9 mutants survived [17710147]. Deletion of SCH9 also increases resistance to heat shock and oxidative stress [11292860], and increases replicative lifespan by 18% (in DBY746) [12586694]. SCH9 deletion increases the replicative lifespan by 40% in the alpha strain [18340043] and increases mean chronological lifespan by 97 - 246% (97, 133, 154, 226, 246) in diploid cells [21447998]. Mutation or deletion of SCH9 increases resistance to oxidants and extends chronological lifespan [11292860; 16286010]. The extended lifespan of SCH9 deletion mutants is not further extended by low glucose DR and is independent of Sir2 [16293764]. Deletion of RIM15 or GIS1 reverses chronological lifespan extension associated with sch9Delta. Water restriction further increases chronological lifespan of sch9Delta [18225956]. Deletion of SCH9 results in a longer chronological lifespan [21076178]. Budding yeast
    MEP2 Deletion of MEP2 extends chronological lifespan [16418483]. Budding yeast
    MEP3 Deletion of MEP3 extends chronological lifespan [16418483]. Budding yeast
    RPS6B RPS6B deletion increases mean replicative lifespan by about 30% [16293764]. Deletion of RPS6B, but not of the RPS6A paralog increases replicative median lifespan robustly by 45% [17174052]. Budding yeast
    YSC84 Deletion of YSC84 increases replicative lifespan by 20% in the alpha strain [19030232]. YSC84 deletion increases replicative lifespan by 25% in the alpha strain [18340043]. Budding yeast
    SWH1 SWH1 (alias OSH1) deletion mutants have an extended replicative lifespan (p=0.02) and DR does not increase the long lifespan of SWH1 deletion mutants [Xia et al. unpublished]. Budding yeast
    VHS1 Viable in a Hal3 Sit4 background 1 Deletion of VHS1 increases replicative lifespan [16293764]. VHS1 deletion increases replicative lifespan by 60% in the alpha strain [19030232]. Budding yeast
    ATH1 Acid TreHalase Deletion of ATH1 extend the mean chronological lifespan by 17% (at 30 degree Celsus in BY4742) [22783207]. ATH1 mutants have higher trehalose levels until the end of the post-diauxic growth phase, but reaches a plateau at the level of 50-70% of wild-type in the stationary phase [22783207]. Budding yeast
    ADE4 ADEnine requiring 4 ade4 mutation extends chronological lifespan, but not replicative lifespan, and is non-additive with 0.5% glucose or amino-acid DR on chronological lifespan extension. ADE4 deletion in atg16 mutants results only in a partial extension of the chronological lifespan by 0.5% glucose DR [20421943]. Budding yeast
    AVO2 Adheres VOraciously (to TOR2) Deletion of AVO2 extends chronological lifespan [21641548]. Budding yeast
    AIM4 Altered Inheritance rate of Mi 4 AIM4 (alias SOY1) deletion increases chronological and replication lifespan, which is non-additive with DR. On AL mean and maximum replicative lifespan are extended by 63 and 69%, respectively. DR appears to decrease aim4-induced replication lifespan extension, indicating a negative interaction. aim4 mutation does not change DR-induced chronological lifespan extension [21584246]. Budding yeast
    ATP1 ATP synthase 1 Deletion of ATP1 increases chronological lifespan by up to 50% [17492370], but decreases replicative lifespan by 70% in the alpha strain [18340043]. Budding yeast
    AFG3 ATPase Family Gene 3 Deletion of the mitochondrial AAA protease AFG3 increases replicative lifespan by 20% in the alpha and a strains [18340043], but decreases chronological lifespan by 37 - 51% in diploid cells [21447998]. AFG3 deletion changes mean, median and maximum lifespan by 15 to 26% 17 to 30% and -25 to +58%, respectively. AFG3 deletion leads to reduced cytoplasmic mRNA translation and its lifespan extension is independent of Sir2 and Hac1, but requires Gcn4. AFG3 deletion further extends the lifespan of cell deficient in both SIR2 and FOB1, but fails to extend the lifespan of dietary restricted cells or cells lacking GCN4. Gcn4 protein levels are increased in afg3 mutants. The deletion of AFG3 fails to extend the replicative lifespan in the W303AR strain. AFG3 deletion does deletion extend the replicative lifespan at 15°C. Budding yeast
    ATG11 AuTophaGy related 11 ATG11 deletion extends replicative lifespan under AL and abrogates DR-lifespan extension [18690010]. Budding yeast
    BAS1 BASal 1 Deletion of BAS1 increases replicative lifespan by 30% in the alpha strain [16293764; 19030232]. Budding yeast
    • Page 1 of 6
    • 25 of 128 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit