Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Types: + -
  • symbol name observation species
    YPT7 Yeast Protein Two 7 YPT7 deletion decreases replicative lifespan by 15% in the alpha strain [18340043]. Deletion of YPT7 cancels out replicative lifespan extension of 0.5% glucose restriction and results under DR also into a shorter replicative lifespan than under AL [18690010]. Budding yeast
    YHB4 Yeast HemogloBin-like protein 4 sfa1;yhb1 double mutant cancels out the ability of moderate DR to extend replicative lifespan, but not chronological lifespan. Indicating that NO homeostasis during DR-induced replicative lifespan extension is crucial. Deleting YHB1 partially abolished DR-induced replicative lifespan extension, whereas deleting SFA1 alone had no effect. Yhb1 and Sfa1 may play redundant roles [21584246]. Budding yeast
    YDL180W YDL180W deletion impairs DR-mediated replicative lifespan extension, but does not change lifespan on AL significantly [22912585]. Budding yeast
    VPS8 Vacuolar Protein Sorting 8 Lack of VPS8 reduces lifespan under starvation conditions to a level similiar to that of wild-type cells incubated in synthetic complete medium and therefore blocked the lifespan-extending effect of DR [20657825]. Budding yeast
    VPS30 Vacuolar Protein Sorting 30 VPS30 deletion prevents chronological lifespan extension induced by amino-acid DR [20421943]. Budding yeast
    VPS21 Vacuolar Protein Sorting 21 Lack of VPS21 reduces lifespan under starvation conditions to a level similiar to that of wild-type cells incubated in synthetic complete medium and therefore blocked the lifespan-extending effect of DR [20657825]. Budding yeast
    VPS20 Vacuolar Protein Sorting 20 VPS20 deletion decreases mean and maximum replicative lifespan by 16% and 19%, respectively, and additionally cancels out the DR-induced replicative lifespan extension [22912585]. Budding yeast
    VMA2 Vacuolar Membrane Atpase 2 VMA2 deletion mutants have a reduced ΔΨ and mitochondrial morphology similar to aged cells. The restoration of the vacuolar acidity in daughter cells requires V-ATPase activity as it is eliminated in VMA2 deletion mutant cells [23172144]. VMA2 deletion mutation decreases the mean replicative lifespan by 80% in the alpha strain [18340043]. Deletion of VMA2 decreases mean, median and maximum replicative lifespan by 84%, 84% and 70%, respectively. DR (0.5% glucose restriction) does not extend the replicative lifespan of VMA2 and shortens it even more [23172144]. Budding yeast
    VMA1 Vacuolar Membrane Atpase 1 Overexpression of VMA1 increases vacuolar acidity and suppresses age-induced mitochondrial dysfunction of aged cells (17 or 18 cell divisions) which requires the V-ATPase activity. VMA1 overexpression significantly increases mean, median and maximum lifespan by 39 - 45%, 39 - 48% and 50 - 60%, respectively. DR (0.5% glucose restriction) does not further increase the lifespan of VMA1 overexpression strain [23172144]. Budding yeast
    VAM7 VAcuolar Morphogenesis 7 VAM7 deletion decreases replicative lifespan under AL and blocked DR-mediated lifespan extension. Replicative lifespan decreases by 70% on DR in VAM7 deletion mutant [18690010]. Budding yeast
    TSA1 Thiol-Specific Antioxidant 1 A gain-of-function allele of peroxiredoxin (thioredoxin peroxidase, Tsa1) causes a dominant oxidative stress-resistance and robust premature aging phenotype with reduced mean lifespan. These effect is not provoked by altered Tsa1 levels, nor can it be stimulated by deletion, haploinssufficiency or overexpression of wild-type allele [20729566]. Disruption of TSA1 shortens chronological lifespan [15129730]. Replicative lifespan extension by DR in sir2;fob1 double mutant is reduced by TSA1 deletion mutant. Wild-type cells require TSA1 to fully extend lifespan. Mutation in CDC35 (adenylate cyclase), a genetic mimetic of DR, is dependent on TSA1 to extend lifespan [21884982]. Budding yeast
    TOR1 Target Of Rapamycin 1 TOR1 deletion extends mean and maximum replicative lifespan by 21 and 25% [16293764] as well as chronological lifespan [21076178]. This lifespan extension is independent of SIR2 and additive with deletion of FOB1 [16293764]. Deletion of TOR1 fails to increase the replicative lifespan of a sir2 mutant [20947565]. Deletion of TOR1 substantially extends chronological lifespan, increasing median survival almost 3-fold (wild-type 4.5 days, tor1 null 12 days), i.e. by 167%. By 21 days in culture, the vast majority of wild-type cells had died (>99.9%), whereas many tor1 null cells remained viable. Deletion of TOR1 also extends the chronological lifespan of the relatively short-lived BY4742 strain, one of the two haploid genetic backgrounds of the widely used Yeast Knockout Collection available from Open Biosystems. Deletion of TOR1 fails to extend chronological lifespan in Petite strains that are unable to respire [17403371]. TOR1 deletion increases replicative lifespan by 30% in the alpha strain and 20% in a strain [19030232]. TOR1 deletion mutant have and increased mean and maximum replicative lifespan by 21% and 6%, respectively [21931558]. Deletion of TOR1 extends replicative lifespan as well as chronological lifespan [21076178] and glucose restriction fails to further extend the long replicative lifespan of tor1Delta [16293764; 16418483; 18225956]. Water starvation (extreme DR) further extends chronological lifespan of tor1 mutants [18225956]. Budding yeast
    TCO89 Tor Complex One TCO89 deletion increases chronological lifespan, increases mitochondrial oxygen consumption, but decreases mitochondrial and cellular ROS in early stationary phase [21641548]. Deletion of TCO89 cancels out replicative lifespan extension by moderate DR [18690010]. Budding yeast
    SWH1 SWH1 (alias OSH1) deletion mutants have an extended replicative lifespan (p=0.02) and DR does not increase the long lifespan of SWH1 deletion mutants [Xia et al. unpublished]. Budding yeast
    SUR4 SUppressor of Rvs161 and rvs167 mutations 4 Deletion of SUR4 cancels out replicative lifespan extension of 0.5% glucose DR [18690010]. Budding yeast
    SRX1 SulfiRedoXin 1 Extra copy of SRX1 counteracts age-related hyperoxidation of Tsa1 and extends replicative lifespan by 15 - 20% in a TSA1-dependent manner. Replicative lifespan extension in sir2;fob1 double mutant by DR is reduced by SRX1 deletion. Wild-type cells require SRX1 to fully extend lifespan. DR fails to further extend replicative lifespan of cells carrying an extra copy of SRX1. Mutation in CDC35 (adenylate cyclase), a genetic mimetic of DR, is dependent on SRX1 to extend replicative lifespan [21884982]. Budding yeast
    SLM4 Synthetic Lethal with Mss4 4 SLM4 deletion blocks replicative lifespan extension by moderate DR, but does affect lifespan on AL significantly [22912585]. Budding yeast
    SIR2 Silent Information Regulator 2 Deletion of SIR2 shortens replicative lifespan by approximately 30%. Integration of a second copy of SIR2 into the wild-type strain leads to an extension of replicative lifespan by around 35% in W303R strain [10521401]. Deletion of SIR2 causes genomic instability at rDNA array [2647300] and shortens replicative lifespan by 50% [11000115]. 0.5% glucose restriction fails to increase the short lifespan of sir2Delta [11000115] probably duo to hyperaccumulations of extrachromosomal rDNA circles (ERCs) [16311627]. 0.1% glucose restriction extends replicative lifespan of sir2 mutants [12213553]. 0.5, 0.1 and 0.05% glucose restriction are able to increase lifespan of sir2;fob1 double mutant to a greater extent than in wild-type [15328540]. 0.05% glucose restriction further extends replicative lifespan of SIR2 overexpression mutant [15328540]. Sir2 blocks extreme chronological lifespan extension as the lack of Sir2 along with DR and/or mutations in the yeast AKT homolog, Sch9, or Ras pathways causes a dramatic chronological lifespan extension (6-fold) [16286010]. Sir2 inhibits formation of ERCs and acts on histones as well metabolic enzymes among others. Overexpression extends replicative lifespan in several strains, but not in PSY316 [15684413]. Chronological lifespan of sir2 deletion mutant is significantly extended compared with wild-type in water (extreme DR) but not in saturated cultures containing 2% glucose (ad libitum). SIR2 mutants are defective for telomere [1913809] and HM silencing [6098447; 3297920]. have increased rDNA recombination [2647300] and a loss of rDNA silencing [9009207; 9009206]. Budding yeast
    SFA1 Sensitive to FormAldehyde 1 sfa1;yhb1 double mutant cancels out the ability of moderate DR to extend replicative lifespan, but not chronological lifespan. Indicating that NO homeostasis is crucial during DR-induced replicative lifespan extension. Deleting YHB1 partially abolishes the DR-induced replicative lifespan extension, whereas deleting SFA1 alone had no effect. Yhb1 and Sfa1 may play redundant roles [21584246]. Budding yeast
    SCH9 Transposon-mediated mutagenesis of SCH9, which encodes for a serine threonine kinase homologous to Akt/PKB, increases resistance to oxidants and thermal stress as well as extends chronological lifespan by 30%. SCH9 deletion increases chronological lifespan by up to threefold. Stress-resistance transcription factors Msn2/Msn4 and protein kinase Rim15 are required for this life-extension. Deletion of the mitochondrial antioxidant enzyme superoxide dismutase gene SOD2 prevents the increased chronological lifespan caused by SCH9 deletion [11292860]. Mutations that decrease the activity of the Ras/Cyr1/PKA pathway also extend longevity and increase stress resistance by activating transcription factors Msn2/Msn4 and Sod2 [12855292]. SCH9 deletion mutants exhibit more than 3-fold extension of chronological lifespan. By day 9 of medium depletion all the wild-type cells were dead while 50% sch9 mutants survived [17710147]. Deletion of SCH9 also increases resistance to heat shock and oxidative stress [11292860], and increases replicative lifespan by 18% (in DBY746) [12586694]. SCH9 deletion increases the replicative lifespan by 40% in the alpha strain [18340043] and increases mean chronological lifespan by 97 - 246% (97, 133, 154, 226, 246) in diploid cells [21447998]. Mutation or deletion of SCH9 increases resistance to oxidants and extends chronological lifespan [11292860; 16286010]. The extended lifespan of SCH9 deletion mutants is not further extended by low glucose DR and is independent of Sir2 [16293764]. Deletion of RIM15 or GIS1 reverses chronological lifespan extension associated with sch9Delta. Water restriction further increases chronological lifespan of sch9Delta [18225956]. Deletion of SCH9 results in a longer chronological lifespan [21076178]. Budding yeast
    RPL31A Ribosomal Protein of the Large subunit 31A Deletion of RPL31A increases mean replicative lifespan by 45% [16293764]. Mean replicative lifespan increases by 35% in the alpha strain and 50% in a strain [19030232; 18423200]. Mean replicative lifespan of the RPL31A deletion mutant increases by 35% in the ORF collection and by 29% in the remade strain [22377630]. RPL31A deletion increases significantly replicative lifespan [17174052]. Deletion of RPL31A extends replicative lifespan and is not further extended by 0.05% glucose restriction [18423200]. Budding yeast
    RPD3 Reduced Potassium Dependency 3 Deletion of the histone deacetylase gene RPD3 extends lifespan by 41%, independently of an intact Sir silencing complex (in the short lived YSK661 strain) [10512855]. Deletion of RPD3 extends replicative lifespan and there was no additive effect by neither 0.1% glucose nor amino acid restriction [12213553]. RPD3 deletion increases rDNA silencing in a partially SIR2-dependent manner [10082585]. Its effects on chromatin functional state were evidenced by enhanced silencing at the three known heterochromatic regions in the genome, the silent mating type (HM), subtelomeric, and rDNA loci, which occurred even in the absence of SIR3 [10512855]. Budding yeast
    RIM15 Regulator of IME2 15 RIM15 deletion results in 50% reduction of maximal chronological lifespan [11292860] and consistently decreases chronological lifespan under AL [21076178]. Rim15 is required for chronological lifespan extension caused by deficiency in RAS2, TOR1, or SCH9, as well as by 0.5% glucose restriction, but not by water starvation [18225956]. Budding yeast
    RCR2 Resistance to Congo Red 2 RCR2 deletion extends mean replicative lifespan by 18% and cancels out the lifespan extending effect of DR [22912585]. Budding yeast
    RAS2 Ras-like protein 2 Overexpression of RAS2 causes a 43% increase in mean and 18% increase in maximum lifespan as well as postpones the age-related increase in generation time. RAS2 deletion causes a 23% decrease in mean and a 30% decrease in maximum lifespan [8034612]. Deletion of RAS2 leads to a longer chronological lifespan [21076178]. Deletion of the RAS2 gene, which functions upstream of CYR1, doubles the mean chronological lifespan by a mechanism that requires Msn2/4 and Sod2 [12586694]. DR further extends chronological lifespan of ras2Delta [18225956]. Budding yeast
    • Page 1 of 4
    • 25 of 80 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit