Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    hsa-let-7a microRNA let-7a A tumor-suppressor downregulated in different types of cancer. Let-7a binds to 3'-UTR region of RAB40C, thus leading to a decrease in cell proliferation and an increase of G1 arrest in human gastric carcinomas [20809749, 21349817]. In human breast cancer, evidence suggests that members of let-7 family inhibit breast cancer cell migration by targeting genes responsible for actin dynamics [23339187]. Moreover, let-7a directly targets CCR7, a receptor that promotes invasiveness of cancer cells [23335963] Human
    hsa-let-7b microRNA let-7b Let-7b, a member of the let-7 group, appears to be a tumor-suppressor. In acute lymphoblastic leukemia, let-7b is severely downregulated and its overexpression inhibits cancer cells growth [22918121]. In melanoma cells, the miRNA downregulates the expression of cell cycle regulators such as cyclin D1, D3, and A and Cdk4, which inhibits cell cycle progression. [18379589] Human
    hsa-let-7c microRNA let-7c let-7c is downregulated in prostate cancer, which increases cell proliferation [22479342]. More specifically, let-7c is a regulator of androgen receptor (AR), which plays a role in the development of prostate cancer [22128178]. Human
    hsa-let-7f hsa-let-7f is significantly upregulated in senescent human mesenchymal stem cells (hMSCs) when compared to early passage hMSC [18493317]. Human
    lin-4 abnormal cell LINeage 4 A loss-of-function mutation in lin-4 shortens lifespan and accelerated tissue ageing while overexpressing lin-4 extends lifespan by redarding aging [16373574]. lin-4 is regulated by DAF-16 in L1 arrest. Nematode
    mir-124 Loss of mir-124 increases reactive oxygen species formation and accumulation of the aging marker lipofuscin, reduces whole body ATP levels and results in reduction in lifespan [23075628]. Supplementation of vitamin C normalizes the reduced median lifespan of mir-124 mutants [23075628]. The expression of the conserved mir-124 in whole wrn-1 mutants (which premature age) is significantly reduced [23075628]. Nematode
    mir-14 mir-14 stem loop Mutating mir-14 decreases lifespan in both sexes. mir-14 reduces the mean and maximum lifespan of females by 55 and 36%, respectively, while those of males is reduced by 29 and 21%, respectively [12725740]. Fruit fly
    miR-214 microRNA 214 Expression increases with age in mouse liver. The miRNA downregulates detoxification and regeneration genes, which may contribute to aging [18561983]. House mouse
    mir-238 Mutating mir-238 decreases mean and maximum lifespan by 18 and 24% [21129974]. mir-238(n4112) mutation decreases mean lifespan by 20% [22482727]. Nematode
    mir-239 Mutating mir-239 increases mean and maximum lifespan by 12 and 36%, respectively, whereas overexpressing mir-239 decreases mean and maximum lifespan by 13 and 17 - 33%, respectively [21129974]. Nematode
    mir-246 Mutating mir-246 decreases mean and maximum lifespan by 12%, while its overexpression increases mean and maximum lifespan by 6 and 5 - 14%, respectively [21129974]. Nematode
    mir-277 Constitutive miR-277 expression shortens lifespan and synthetically lethal with reduced insulin signaling, indicating that metabolic control underlies this phenotype. Transgenic inhibition with a miRNA sponge construct also shortens lifespan [23669073]. miR-277 is downregulated during adult life [23669073]. mir-277 controls branched-chain amino acid catabolism and as a result it can modulate the activity of TOR kinase [23669073]. Fruit fly
    mir-34 mir-34 loss triggers a gene expression profile of accelerated brain aging, late-onset brain degeneration and catastrophic decline in survival, while mir-34 upregulation extends median lifespan and mitigated neurodegeneration induced by polyglutamine. Fruit fly
    mir-58 mir-58(n4640) mutation decreases the mean lifespan by 20% [22482727]. Nematode
    mir-71 Loss and gain-of-function of mir-71 decreases and increases lifespan, respectively [21129974]. mir-71 mutants have a reduced lifespan with 40% decrease in mean lifespan, while extra copies of mir-71 extend the lifespan with an increase in lifespan by 15 - 25% [22482727], Loss of mir-71 function suppresses the long lifespan of glp-1(e2141) mutants [22482727], During adulthood mir-71 is strongly expressed in the intestine, body wall muscles and neurons. mir-71 is upregulated in aging adults [22482727], Nematode
    Mir1 miR-1 is associated with stem cell differentiation in mouse and human ESCs [18371447]. House mouse
    MIR106A microRNA 106A MIR106A is downregulated in senescent cells as it has a good correlation with p21 transcription, while p53 represses mir17-92 cluster [20437201; 20089119]. Human
    Mir133 miR-133 is associated with stem cell differentiation in mouse and human ESCs [18371447]. House mouse
    MIR145 microRNA 145 MIR145 is a tumor suppressor that acts by inhibiting IRS-1 in human colon cancer cells. It also targets IGFR1 [17827156; 19391107]. It decreases cell migration in gliomas by targeting CTGF, metastasis and migration-promoting gene. MIR145 is downregulated in astrocytic tumors and oligodendrogliomas [23390502; 23577178]. Human
    MIR146A microRNA 146a miR-146a/b is significantly elevated during senescence as a compensatory response to restrain inflammation via the suppression of IL-6 and IL-8 secretion and downregulation of IRAK1 (component of IL-1 receptor signaling). Ectopic expression of miR-146a/b in primary fibroblasts suppresses IL-6 and IL-8 secretion and downregulation of IRAK1 [20148189]. Human
    MIR146B microRNA 146b miR-146a/b is significantly elevated during senescence as a compensatory response to restrain inflammation via the suppression of IL-6 and IL-8 secretion and downregulation of IRAK1 (component of IL-1 receptor signaling). Ectopic expression of miR-146a/b in primary fibroblasts suppresses IL-6 and IL-8 secretion and downregulation of IRAK1 [20148189]. Human
    miR148a microRNA 148a miR148a belongs to miR148-152 cluster and acts as a tumor-suppressor in different types of cancer. MiR148a expression is suppressed more than 4-fold in gastric cancer. An inverse correlation has been observed between miR148a expression and lymph node metastasis in gastric cancer. Mir148a suppresses migratory abilities of cancer cells and metastasis formation by downregulating the oncogene ROCK1 expression [21994419]. miR148a is downregulated in pancreatic ductal adenocarcinoma (PDAC). it has been shown that miR148a directly targets the 3'UTR region of CDC25B mRNA. CDC25B is a phosphatase that, by activating a cyclin-CDK complex, initiates mitosis, therefore CDC25B suppression by miR148a could have a tumor-suppressor effect on PDAC. [21709669] Human
    miR152 microRNA 152 MiR152 belongs to miR148/152 cluster and can act as a tumor-suppressor. In ovarian cancer, miR152 suppresses DNMT1 directly and inhibits proliferation of cancer cells. [23318422] The miRNA is downregulated in ovarian cancer cells lines and its downregulation may lead to deregulation of cell proliferation in ovarian cancer. [21971665] Human
    MIR155 microRNA 155 mir-155 is significantly overexpressed in human breast cancer while targeting the miRNA could induce apoptosis and cell cycle arrest as well as inhibit cell growth. [18719391]. Mir155 acts by repressing socs1, a tumor suppressor. In addition, inflammatory signals may activate miR155, thus suggesting that the miRNA serves as a link between inflammation and malignancy formation [20354188]. It is also upregulated in lung cancer and acts an oncogene by targeting Apaf1 and thus reducing apoptosis rate [22996741]. Inhibition of mir-155 radiosensitizes cancer cells [22027557]. Human
    MIR15A microRNA 15a MIR15A is a tumor-suppressor downregulated in different types of cancers. In chronic lymphocytic leukemia (CLL) it is downregulated in 68% of cases [12434020]. MIR15A may post-transcriptionally downregulate the expression of Bcl2, thus inducing apoptosis. Therefore, inactivation of MIR15A and MIR16-1 in CLL lymphocytes results in a reduced apoptosis rate [16166262]. In prostate cancer, MIR15A and MIR16-1 are downregulated, which results in decreased repression of FGF-2, thus promoting tumor expansion and invasiveness [21532615]. MIR15A and MIR16-1 are also downregulated in pituitary adenomas as thier expression exhibits an inverse correlation with tumor diameter, therefore possible influence on tumor growth [15648093]. Human
    • Page 1 of 2
    • 25 of 42 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit