Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Types: + -
    Gene (1)  
  • symbol name observation species
    DAP2 Dipeptidyl AminoPeptidase 2 DAP2 deletion decreases mean and maximum replicative lifespan under AL by 19 and 36%, respectively, and cancels out the lifespan extending effect of moderate DR [22912585]. Budding yeast
    DIF1 Damage-regulated Import Facilitator 1 Deletion of DIF1 decreases replicative lifespan by 20% in the alpha strain [19030232]. Budding yeast
    DNA2 DNA synthesis defective 2 Mutants in DNA2 exhibit an accelerated ageing phenotype including extended cell cycle time, age-related transcriptional silencing defects, and nucleolar reorganization, which are all phenotypes of old wild-type cells. Lifespan of DNA2 mutants is extended by expression of an additional copy of SIR2 or by deletion of FOB1 and therefore the lifespan shortening partially suppressed. Three different alleles of DNA2 (dna2-1, dna2-2, and dna2-20) result in a significant shortened lifespan up to 85%. DNA2 mutation shorten the already short lifespan of SGS1 mutants [12024027]. Budding yeast
    ERG2 ERGosterol biosynthesis 2 Overexpression of ERG2 with the promoter of ERG6 (Perg6-ERG2) extends replicative lifespan and this effect was overlapping with moderate DR, because DR can not extend the lifespan of this mutant [Tang et al., unpublished]. Perg6-ERG2 does not extend the lifespan significantly on normal medium, but it reverses the effect of DR. DR greatly shortens the lifespan of Perg6-ERG2 mutants. Perg6-ERG2 shortens the lifespan of nyv1 deletion mutations [Xia et al. unpublished]. Deletion of OSH5 greatly shortens the lifespan of Perg6-ERG2. SIR2 overxpression extends the lifespan of Perg6-ERG2 [Xia et al. unpublished]. Budding yeast
    ERG3 ERGosterol biosynthesis Deletion of ERG3 decreases replicative lifespan under AL, cancels out replicative lifespan extension of 0.5% glucose DR and results under DR also into a shorter replicative lifespan than under AL [18690010]. Budding yeast
    ERG5 ERGosterol biosynthesis 5 Deletion of ERG5 decreases replicative lifespan by 35% in the a strain [18340043], but increases mean chronological lifespan by 26 - 116% (26, 40, 43, 62, 116) in diploid cells [21447998]. Deletion of ERG5 cancels out the replicative lifespan extension of 0.5% glucose restriction [18690010]. Budding yeast
    ERG6 ERGosterol biosynthesis 6 Deletion of ERG6 cancels out replicative lifespan extension of 0.5% glucose DR and results under DR also into a shorter replicative lifespan than under AL [18690010]. Budding yeast
    ESA1 esa1-531 mutant has an even shorter chronological lifespan than PKA1 deletion mutant in both 2% glucose (ad libitum) and water (extreme DR) at 30 degree Celsius, a semipermissive temperature. At the permissive temperature (25 degree Celsius) there is little difference [19303850]. Budding yeast
    FIS1 fission 1 (mitochondrial outer membrane) homolog (S. cerevisiae) Deletion of FIS1 prolongs significantly mean and maximum lifespan by 13 and 29% as well as improves the fitness of old mother cells (in BY4741) [17173038]. Budding yeast
    GCN2 General Control Nonderepressible 2 Deletion of GCN2 decreases replicative lifespan by 10% in a strain [18340043]. GCN2 deletion decreases replicative lifespan by 10-20% in both alpha and a strains [19030232]. Budding yeast
    GCN4 Transcriptional activator of amino acid biosynthetic genes in response to amino acid starvation; expression is tightly regulated at both the transcriptional and translational levels Deletion of GCN4 increases the replicative lifespan by 10% in the alpha strain [19030232]. GCN4 deletion decreases the lifespan in the alpha and a strain [20657825]. The chronological lifespan of GCN4 deletion is strongly decreased in the a strain [20421943]. Budding yeast
    GCN5 General Control Nonderepressible 5 Deletion of GCN5 decreases replicative lifespan of extension of rho+ and rho0 cells as well as suppresses lifespan extension by the retrograde response [15547318]. Deletion of GCN5 strongly reduces chronological lifespan [19801973]. Budding yeast
    GIN4 Growth Inhibitory 4 Deletion of GIN4 decreases replicative lifespan by 35% in the alpha strain [18340043; 19030232]. Budding yeast
    GLN3 GLutamiNe metabolism 3 Deletion of GLN3 extends chronological lifespan [16418483]. GLN3 deletion decreases replicative lifespan by 20% in the alpha strain [19030232]. GLN3 deletion in the vineyard strain dramatically shortens chronological lifespan, while extends that of the laboratory strain [21901113]. Budding yeast
    GMC2 Grand Meiotic recombination Cluster 2 Deletion of GMC2 decreases replicative lifespan by 50% in the alpha strain [19030232]. Budding yeast
    GPD1 Glycerol-3-Phosphate Dehydrogenase 1 GPD1 deletion shortens replicative lifespan by 25% and prevents lifespan extension by high osmolarity [12391171]. Transcripational regulation of GPD1 by osmotic stress requires HOG1 [8196651]. Budding yeast
    GTR1 GTp binding protein Resemblance 1 GTR1 deletion decreases mean and maximum replicative lifespan under AL by 36 and 51%, respectively, and cancels out the lifespan extending effect of DR [22912585]. Budding yeast
    GTS1 Glycine Threonine Serine repeat protein 1 Deletion or overexpression of GTS1 shortens replicative lifespan significantly and slightly, respectively (wt:26, Delta:16 and OE:24) [8573138]. Budding yeast
    GUT2 Glycerol UTilization 2 Overexpression of GUT2 extends replicative lifespan by 25% and does not synergize with 0.5% glucose restriction [18381895]. Budding yeast
    HAP4 Heme Activator Protein 4 Overexpression of HAP4 from the ADH1 promoter extends lifespan of PSY316 strain approximately 40% under growth conditions favoring fermentation (2% glucose). Overexpression of HAP4 increases replicative lifespan, but is non-additive with 0.5% glucose restriction in lifespan extension. Lifespan extension by HAP4 overexpression requires SIR2 [12124627]. HAP4 deletion suppresses replicative lifespan extension to 30% and 33% on 0.1% glucose and on elimination of non-essential amino acids, respectively [20178842]. HAP4 overexpressing cells demonstrate a transcriptional response resembling cells undergoing diauxic shift, consume more oxygen, and exhibit increased Sir2-dependent transcriptional silencing at telomeres and rDNA [12124627]. Budding yeast
    HAP5 Heme Activator Protein 5 Deletion of HAP5 shortens replicative lifespan by approximately 40%. This is not a premature aging phenotype as "old" HAP5 cells do not become premature sterile or exhibit other biomarkers of yeast aging [9271578]. HAP5 null mutants are unable to grow on a non-fermentable carbon source [7828851]. Budding yeast
    HOG1 High Osmolarity Glycerol response 1 Deletion of HOG1 shortens replicative lifespan by 25% and prevents lifespan extension by high osmolarity [12391171]. HOG1 is required for many of the transcriptional responses to high osmolarity, including increased glycerol biosynthesis and MSN2/4-dependent stress response [10722658]. HOG1 deletion slightly decreases chronological lifespan and partially suppresses the premature aging phenotype and short lifespan of ISC1 deletion [22445853]. Budding yeast
    HPR1 HyPerRecombination 1 Deletion of HPR1 decreases replicative lifespan [11756539] Budding yeast
    HSC80 Deletion of HSC82 has no effect on replicative lifespan, but shortens chronological lifespan [11361336]. Budding yeast
    HSP104 Heat shock protein that cooperates with Ydj1p (Hsp40) and Ssa1p (Hsp70) to refold and reactivate previously denatured, aggregated proteins; responsive to stresses including: heat, ethanol, and sodium arsenite; involved in [PSI+] propagation Deletion of HSP104 leads to a 14% [9851879] to 40% [17908928] reduction in mean replicative lifespan, therfore it is required for required for longevity. Overexpression of HSP104 driven by GAL promoter is insufficient to extend replicative lifespan [9851879]. Overproduction of HSP104 in wild-type cells has no effect on replicative life span, but suppresses the reduced lifespan of Sir2-deficient cells [17908928]. Exposure of cells to transient sub-lethal heat-stress extends mean lifespan by 12% while decreasing maximum lifespan by 14%. This effect does not occur in an HSP104 null mutant [9851879]. HSP104 null mutant is viable but displays reduced high temperature survival and its overproduction is sufficient to induce thermotolerance [8643570]. Budding yeast
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit