Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    Trp53 Transformation related protein 53 Mice heterozyogous for an allele of p53 that removes the 5' portion of the protein demonstrate decreased cancer, permature aging phenotypes, and shortened lifespan in the mixed inbred C57BL/6–129/Sv background. It has been proposed that the this allele of p53 results in increased activity/overexpression [11780111]. Decreased activity of Trp53 results in increased cancer and decreased apoptosis. Mutant mice with activated Trp53 display enhanced resistance to spontaneous tumours and signs of premature ageing including reduced lifespan, osteoporosis, organ atrophy and a diminished stress tolerance [11780111]. However, super-p53 mice generate by a transgenic copy of a large genomic segment containing an intact and complete copy of p53 have an ehanced response to DNA damage, are significantly protected from cancer and had no indication of accelerated aging [12426394]. super-Ink4a/Arf/p53 mice have a synergic protection against cancer and delayed aging [Workshop RoSyBa 2011]. House mouse
    W09C5.8 RNAi against W09C5.8 increases mean and maximum lifespan by 62% and 50%, respectively [12447374]. Lifespan extension by RNAi of W09C5.8 is not suppressed by daf-16. Loss of W09C5.8 activity via RNAi can also result in a shortened lifespan, reduced fertility and defects in mitochondrial respiratory chain function [19074434]. W09C5.8 RNAi animals have lower ATP content and oxygen consumption [12447374]. Nematode
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit