Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    Loco locomotion defects Reduced expression of Loco due to hetero-deficient results in a 17-20% longer mean lifespan for both male and females, besides the fact that the homozygous deficiency of loco is lethal. Several of these long-lived mutants are more resistant to stresses such as starvation, oxidation and heat. Additionally, mutants have higher Manganese-containing superoxide dismutase (MnSOD) activity, increased fat content an diminished cAMP levels. Loco's RGS domain is required for the regulation of longevity as deletion analysis suggest [21776417]. Fruit fly
    CG9172 RNAi against CG9172 increases mean lifespan in females by up to 4-12% when applied in both development and adulthood, and up to 46% when applied in adult neurons only. For males the effect is variable [19747824]. Fruit fly
    CG17856 RNAi of CG17856 results in an increase in mean lifespan of 13-18% in females. In the case of males and post-developmental experiments the results are variable [19747824]. Fruit fly
    CG18809 RNAi of CG18809 results in a 7-19% increase in mean lifespan of females, while neural RNAi results in an increased mean lifespan of up to 12% in females. For males the results are variable [19747824]. Fruit fly
    CG5389 RNAi of complex V subunit CG5389 results in increased mean longevity under standard laboratory food conditions (3% yeast) in males. RNAi started from the development results in a mild lifespan increase in both sexes (3-11% in females and 3-8% in males). Post-developmental RNAi and silencing limited to neurons has variable effects with reduction in lifespan of up to 9% [19747824]. Under rich media conditions CG5389 knockdown throughout development and adulthood increases mean lifespan by 26% and abolished the lifespan extension by DR (started in the adulthood) in males. Suppression of CG5389 only during the adulthood either via RNAi by tub-GS or via oligomycin (a specific inhibitor of complex V) feeding prevents an increase in longevity under DR (started in the adulthood) in males [19968629]. Fruit fly
    sun Stunted sun mutations increases lifespan and resistance to oxidative stress [15133470] Fruit fly
    Surf1 surfeit gene 1 Surf1 knockdown results in larval lethality. However, knockdown in the central nervous system (CNS) not only bypasses the larval lethality but it results in an increase in maximum lifespan of about 20-30% [16172499]. Fruit fly
    Edem1 The mean lifespan of Edem1 mutants of both male and female is increased by more than 30% [19302370]. Fruit fly
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit