Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Species: + -
  • symbol name observation species
    nhr-62 Nuclear Hormone Receptor family NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. *nhr-62* mediates the longevity response of *eat-2* mutants and blunts the longevity by bacterial food dilution [Heestand, et al. 2012]. Mutation in *nhr-62* suppresses the lifespan extension of eat-2(ad465) animals (p<0.001) [Heestand et al. 2013]. Wild-type (N2) worms with extrachromosomal array dhEx627 (carrying a wild-type nhr-62) exhibit a significant increase in lifespan compared to wild-type (p<0.001) [Heestand et al. 2013]. Nematode
    nlp-7 Neuropeptide-Like Protein nlp-7 RNAi or overexpression reduces oxidative stress resistance and shortens lifespan of wild-type under AL. nlp-7 RNAi significantly reduces extended lifespan of eat-2 mutants, but failed to block lifespan extension of age-1 or clk-1 mutants. Lifespan of nlp-7 mutants increases only moderately by sDR [19783783]. nlp-7 expression is induced under DR via the use of a chemically defined axenic medium [17023606] and by sDR [19783783]. Nematode
    pha-4 defective PHArynx development 4 pha-4 is required for multiple forms of DR. RNAi of pha-4 completely cancels out the lifespan extension of eat-2 mutation. Mutants of pha-4 do not respond to bacterial DR. Therefore, loss of pha-4 completely blocks the response to varying food concentration. Moreover, pha-4 expression is increased in response to DR in wild-type. pha-4 overexpression increases longevity of wild-type only slightly, but significant that of daf-16 mutants. The response to DR involves the PHA-4-dependent expression of sod-1, sod-2 and sod-5. Reduction of pha-4 does not suppress the long lifespan of daf-2 mutants or animals with defective electron transport chain [17476212]. IF significantly extends lifespan of pha-4 [19079239]. sDR extends lifespan of mutants with a temperature sensitive allele of pha-4 or pha-4 RNAi knockdown, but not daf-16 RNAi [19239417]. PHA-4 may play a role in the life-extending effects of dietary restriction. RNAi of pha-4 decreases lifespan of wild-type worms, but not of daf-2 mutants or of animals with defective electron transport chains. Nematode
    rab-10 RAB family rab-10 RNA interference significantly extends lifespan of wild-type by 14 - 16%, of daf-16 mutants by 47%, and of daf-2 by 46%, but fails to significantly further extend lifespan of eat-2 mutants. rab-10 RNAi does not affect pumping, but similar to DR reduces and delays reproduction as well as cause a slender appearance. rab-10 mRNA is 2-fold downregulated in response to DR [16103914]. rab-10 RNAi significantly reduces paralysis in Q35YFP transgenic animals [18331616]. Nematode
    age-1 AGEing alteration 1 Recessive knockout mutants of age-1 have a 40-65% increase in mean lifespan and a 65-110% increase in maximum lifespan [8608934; 8700226]. age-1(mg44) zygotic null mutants have a mean (99%) and maximum (117%) lifespan extension [18828672]. Even in axenic culture lifespan of age-1 is extended up to 100%. age-1 mutation significantly extends lifespan under AL, but only slightly under sDR [16720740]. RNAi against age-1 extends lifespan by 30% [8700226; 8608934]. age-1 RNAi increases mean and maximum lifespan by 36-46% and 48-50% [12447374]. RNAi against age-1 increases mean lifespan by 83% [18828672]. age-1 mutants are dauer constitutive [8056303] and display lower brood size as well as increased embryonic lethality [9504918]. Additionally, age-1 mutants have elevated levels of superoxidase dismutase and catalase activities [8389142]. age-1 RNAi and mutation extend lifespan by 30% and 100%, respectively [8700226; 8608934]. Nematode
    rheb-1 RHEB (Ras Homolog Enriched in Brain) hom rheb-1 RNAi extends lifespan by mimicking the DR effect. Under AL condition, rheb-1 RNAi extends lifespan by 19.1% and the longevity-promoting effects of two DR regimens sDR and intermittent fasting are abolished [19079239]. Knockdown of rheb-1 by RNAi only during the adulthood increases mean, median and 75th %ile lifespan by 18-25, 25 and 23-24%, respectively, but failed so in skn-1 or daf-16 mutant (with and without FUdR). Knockdown of rheb-1 dramatically enhances stress tolerance in an skn-1, but not daf-16-dependent manner [22560223]. Nematode
    nekl-2 NEK (NEver in mitosis Kinase) Like 2 RNA intereference of nekl-2 decreases lifespan by 24% and suppresses lifespan extension by eat-2 mutation [22829775]. Nematode
    asp-3 ASpartyl Protease 3 RNA interference against asp-3 significantly reduces lifespan of eat-2(ad1116) mutants, without any significant affect on the lifespan of wild-type. Mean and 75%ile lifespan of eat-2 mutants is reduced by 13-14% and 5-9% by asp-3 RNAi. ASP-3 is upregulated in eat-2 mutants [22810224]. Nematode
    atg-7 AuTophaGy (yeast Atg homolog) 7 RNA interference against atg-7 shortens mean lifespan by 23% and maximum lifespan by 30% in a eat-2 mutant background but not in wild-type animals. Thus, atg7 RNAi does not affect lifespan of wild-type, but totally cancels out the lifespan extension effect of eat-2 mutation [17912023]. Nematode
    vit-5 VITellogenin structural genes (yolk protein genes) 5 RNA interference against vit-5 extends mean lifespan by 10-22%. vit-5 is differentially transcribed in daf-16 and daf-2 RNAi animals [12845331]. RNAi knockdown of vit-5 starting at hatching or only during the adulthood significantly extends lifespan of wild-type, but does not alter, or even shortens the lifespan of eat-2 mutants [22810224]. Nematode
    acdh-12 Acyl CoA DeHydrogenase 12 RNA interference of acdh-12 starting at hatching or only during the adulthood significantly decreases eat-2 lifespan without affecting the lifespan of wild-type [22810224]. Nematode
    cpf-2 Cleavage and Polyadenylation Factor 2 RNA interference of cpf-2 decreases mean lifespan by 6% and suppresses lifespan extension by eat-2 mutation [22829775]. Nematode
    drr-2 Dietary Restriction Response (WT but not eat-2 lifespan increased) 2 RNA interference of drr-2 extends lifespan [15998808]. drr-2 RNAi extends lifespan of wild-type by 10-16%, but fails to significantly extend lifespan of daf-2 mutants or eat-2 mutants. drr-2 RNAi keeps a normal, well-fed appearance and normal reproduction. drr-2 mRNA expression is 2-fold reduced in eat-2 mutants [16103914]. drr-2 RNAi significantly reduces paralysis in Q35YFP transgenic animals [18331616]. drr-2 overexpression suppresses lifespan extension by eat-2 mutation and solid plate-based DR [20456299]. Nematode
    hsf-1 Heat Shock Factor 1 RNA interference of hsf-1 suppresses normal dauer formation and life-extension due to insulin-like signaling [14668486]. hsf-1 overexpression extends mean, median, and maximum lifespan by 37, 35, and 29%[22737090]. hsf-1 RNAi abrogates lifespan extension by daf-2(e1370) mutation, but not eat-2(ad1116) or isp-1(qm150). HSF-1, like DAF-16, is required for daf-2 mutations to extend lifespan [12750521]. A mutant allele of hsf-1 slightly decreases lifespan under AL, but cancels out the lifespan extension effect of bDR. hsf-1 RNAi also prevents lifespan extension by bDR. bDR significantly reduces paralysis of Q35YFP or ABeta42 transgenic animals and hsf-1 RNAi totally cancels this effect. DR confers a general protective effect against proteotoxicity and promotes longevity by a mechanism involving hsf-1 [18331616]. Glucose or glycerol does not shorten the lifespan of hsf-1 mutants. Glucose treatment completely suppresses the long lifespan caused by hsf-1 overexpression [19883616]. sDR extends the lifespan of hsf-1 mutant with a premature stop codon, that eliminates activation domain, and that of wild-type to a similar extent [19239417]. hsf-1 RNAi attenuates lifespan extension by bDR, but only partially that of daf-2 mutation. hsf-1 RNAi attenuates protection against oxidative stress by bDR. hsf-1 expression is induced by bDR [19924292]. RNAi of hsf-1 shortens median and maximum lifespan by approximately 35%. hsf-1 RNAi animals exhibit phenotypes associated with accelerated aging (as assyed by Nomarsky microscopy) [12136014]. Nematode
    ins-7 INSulin related 7 RNA interference of ins-7 extends the mean lifespan by 55% at 20 degree Celsius in N2 rrf-3(pk1426) [12845331]. ins-7 RNAi significantly extends lifespan under AL. Treating wild-type with 2% glucose produced pattern of gene expression that overlaps significantly with that produced by genetic inhibition of daf-16 activity in daf-2 mutants. This results in changes in expression of several insulin-like genes, including DAF-16 target gene ins-7. Addition of glucose triggers an increased ins-7:GFP expression. Glucose suppresses the extended lifespan by ins-7 RNAi [19883616]. RNAi of ins-7 does not further extend the lifespan in daf-2 mutants [12845331]. ins-7 is repressed in animals with reduced daf-2 activity and elevuated in animals with reduced daf-16 activity. Nematode
    skn-1 SKiNhead 1 RNA interference of or mutations in skn-1 prevent the life-extension effects of dietary restriction [17538612]. skn-1 transgenes that overexpress a constitutive nuclear form of SKN-1 in the intestine extend the mean lifespan by 5-21%, independently of DAF-16 [18358814]. skn-1 mutation does not alter lifespan under AL, but cancels out the lifespan extension effect of lDR or food variation at all. Response to lDR in skn-1 mutant is restored by ectopic expression of skn-1 in ASI neurons and gut. Ectopic expression of skn-1b in ASI neurons rescued lDR longevity defects of skn-1. Ablation of ASI neurons completely suppresses the response to DR in wild-type or daf-16 mutants and cause a small increase in basal longevity of wild-type but not daf-16 mutants. lDR significantly increases SKN-1 expression in ASI neurons. lDR worms exhibit elevated respiration, which is absent in skn-1 mutants. skn-1 is necessary for increased respiration and the increase in respiration is necessary for lDR longevity effect, because two different inhibitors of mitochondrial electron transport chain complex III, myxothiazol and antimycin, suppress lDR longevity without shortening lifespan under AL. In contrast, the long life of a daf-2 mutant is not affected by antimycin. Some isoforms of SKN-1 are expressed from an operon downstream of bec-1. Beclin-1 mediates autophagy induced by nutrient deprivation. Therefore, skn-1 might be regulated by nutritional stress [17538612]. IF significantly extends lifespan of skn-1 mutants [19079239]. sDR extends lifespan of a skn-1 loss-of-function mutant (which displays a premature stop codon in all three isoforms) and wild-type to a similar extent [19239417]. skn-1(zu67) mutation decreases mean, median, and maximum lifespan by 11-23, 13-28 and 12-23%, respectively, and totally cancels out lifespan extension by ragc-1 RNAi [22560223]. Nematode
    phi-50 RNA interference of phi-50 decreases mean lifespan by 29% and suppresses lifespan extension by isp-1 and eat-2 mutation but does not significantly affect lifespan extension by daf-2 [22829775]. Nematode
    pod-2 Polarity and Osmotic sensitivity Defect 2 RNA interference of pod-2 starting at hatching or only during the adulthood significantly decreases eat-2 lifespan without affecting the lifespan of wild-type. POD-2 is downregulated in eat-2 [22810224]. Nematode
    pyc-1 PYruvate Carboxylase 1 RNA interference of pyc-1 starting at hatching or only during the adulthood significantly decreases eat-2 lifespan without affecting the lifespan of wild-type. PYC-1 is downregulated in eat-2 mutants [22810224]. Nematode
    sbds-1 Shwachman-Bodian-Diamond Syndrome protein homolog 1 RNA interference of sbds-1 decreases median lifespan by 24% in daf-2 mutants [18006689]. RNAi knockdown of sbds-1 starting at hatching or only during the adulthood significantly decreases lifespan of eat-2 without affecting wild-type lifespan. SBDS-1 are elevated in eat-2 mutants. Increased content of SBDS-1 is, at least partially, required for lifespan-extension by DR [22810224]. Nematode
    smk-1 SMEK (Dictyostelium Suppressor of MEK null) homolog 1 RNA interference of smk-1 completely suppresses the extended longevity of daf-2 mutations and partly the life-extension of clk-1 mutants. smk-1 RNAi decreases mean and maximum lifespan of similar level than daf-16 knockdown [16530049]. smk-1 RNAi only slightly shortens the lifespan of wild-type worms, but abolishes the extended lifespan of eat-2 mutants [17476212]. Loss of smk-1 by temperature sensitive allele suppresses the extended lifespan under optimal bDR, but not the response to DR itself [17476212]. Nematode
    unc-52 UNCoordinated 52 RNA interference of unc-52 in adulthood extends mean lifespan by 11% [17411345]. RNAi knockdown of unc-52 starting at hatching or only during the adulthood significantly decreases lifespan of eat-2 without affecting wild-type lifespan. UNC-52 levels are elevated in eat-2 mutants. Increased content of UNC-52 is, at least partially, required for lifespan-extension by DR [22810224]. Nematode
    wnk-1 mammalian WNK-type protein kinase homolog 1 RNA interference of wnk-1 decreases lifespan by 9% and suppresses lifespan extension by eat-2 mutation [22829775]. Nematode
    wwp-1 WW domain Protein (E3 ubiquitin ligase) 1 RNA interference of wwp-1 decreases median lifespan by 9% in wild-type animals and 24% in daf-2 mutants [18006689]. Loss of wwp-1 function by RNAi or mutation reduces lifespan at 25 degree Celsius, but not 20 degree Celsius. wwp-1 overexpression extends lifespan by up to 20%. Reduced levels of wwp-1 completely suppress the extended longevity of eat-2 mutants. Lifespan of wwp-1 mutants across entire food concentration range by bacterial dilution in liquid culture or on solid plates does not noticeable change. There is no difference in wwp-1 mRNA levels under AL and DR. RNAi reduction of pha-4, but not of daf-16 suppresses increased longevity by wwp-1 overexpression. Mutations in iron sulphur component of complex III, isp-1, increases longevity by reducing mitochondrial function. wwp-1 RNAi does not suppress the extended lifespan of isp-1 mutants and has only minor suppressive effects on lifespan of another mitochondrial mutant, clk-1, and in cyc-1 RNAi treated worms. RNAi depletion of wwp-1 has no effect on long lifespan of daf-2 mutants [19553937]. Nematode
    acdh-1 Acyl CoA DeHydrogenase 1 RNAi knockdown of acdh-1 starting at hatching or only during the adulthood significantly decreases lifespan of eat-2 without affecting wild-type lifespan. ACDH-1 significantly upregulated in eat-2. Increased content of ACDH-1 is, at least partially, required for lifespan-extension by DR [22810224]. Nematode
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit