Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    Rh2 Rhodopsin 2 Rh2 exhibits a non-coding region difference unique to animals under experimental evolution selected for longevity and it is differentially expressed in head of animals that were selected for longevity [23106705]. Fruit fly
    Retsat All-trans-retinol 13,14-reductase Retsat is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Resp18 Regulated endocrine-specific protein 18 Resp18 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Rala Ras-related protein Ral-A Rala is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Rab3b RAB3B, member RAS oncogene family Rab3b is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Ptpro protein tyrosine phosphatase, receptor type, O Ptpro is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Psa Puromycin sensitive aminopeptidase Psa exhibits a non-coding region difference unique to animals under experimental evolution selected for longevity and is upregulated in head of animals that were selected for longevity at all ages except 50 days [23106705]. Experimental u-regulation of Psa protects against tau-induced neurodegeneration [16950154]. Fruit fly
    Pigq phosphatidylinositol N-acetylglucosaminyltransferase subunit Q Pigq is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Pde5a cGMP-specific 3',5'-cyclic phosphodiesterase Pde5a is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Pdcd5 programmed cell death protein 5 Pdcd5 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Cct1 CTP:phosphocholine cytidylyltransferase 1 Overexpression of Cct1 from a doxycycline-inducible promoter results in a 6 - 8% increase in mean lifespan (in the PdL x rtTA; Oregon-R x rtTA strain) [12620118]. Cct1 exhibits a non-coding region difference unique to animals under experimental evolution selected for longevity and is upregulated in head of animals that were selected for longevity at all ages beyond the day of eclosion [23106705]. Fruit fly
    Mul1 mitochondrial ubiquitin ligase activator of NFKB 1 Mul1 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Mrpl52 39S ribosomal protein L52, mitochondrial Mrpl52 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Mrpl32 39S ribosomal protein L32, mitochondrial Mrpl32 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    MIR21 MIRN21; hsa-mir-21; miR-21; miRNA21 MIR21 is the most highly expressed microRNA gene in octogenarians and centenarians. MIR21 expression is higher under cardiovascular diseases and lower in centenarian offspring. MIR21 is correlated with C-reactive protein and fibrinogen levels. TGF-βR2 mRNA, a MIR21 target, exhibits the highest expression in leukocytes form a subset of octogenarians. MIR-21 may be a biomarker of inflammation [23041385]. Human
    Mir98 microRNA mir-98 miR-98-3p is the only miRNA significantly differentially expressed (upregulated) under DR and LA (lipoic acid; a DR-mimetic) treatment. Across mouse, rat and human predicted targets of miR-98-3p include the glutamate receptors, calcium transporters, histones and histone acetyltransferase/deacetylases. miR-89-3p is expressed at a low level and is highly conserved in rat, mouse, human and anplis lizard. Mir-98 precursor is located on the X-chromosome. In the rat, mouse and human genome it overlaps an E3 ubiquitin ligase HUWE which is involved in regulation of apoptosis, regulation of neural differentiation and proliferation, DNA damage repair [Shona et al. 2013]. miR-98 expression is significantly decreased in the adventitia and endomembrane ath different degrees in Goto-Kakizaki rat, a model of type 2 diabetes. miR-98 targets TRB2 which is increased in expression in this model of type 2 diabetes. TRB2 phosphorylates Akt [22012613]. The mouse ortholog of Mir98 may by associated with the germline [16766679]. Norway rat
    Mapk6 Mitogen-activated protein kinase 6 Mapk6 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    LOC100361934 NADH dehydrogenase (ubiquinone) 1 beta subcomplex 4 LOC100361934 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    LOC100361856 6.8 kDa mitochondrial proteolipid-like LOC100361856 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    LOC100361180 40S ribosomal protein S17-like LOC100361180 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Leprel2 leprecan-like 2 Leprel2 is transcriptional downregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to *ad libitum*+ lipoic acid) [Shona et al. 2013]. Norway rat
    LanB2 Laminin B2 LanB2 exhibits a non-coding region difference unique to animals under experimental evolution selected for longevity and it is differentially expressed in head of animals that were selected for longevity [23106705]. Fruit fly
    Lamc1 laminin, gamma 1 Lamc1 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    kst karst kst exhibits a non-coding region difference unique to animals under experimental evolution selected for longevity and it has three differentially expressed transcripts in head of animals that were selected for longevity [23106705]. Fruit fly
    Dctn6 dynactin subunit 6 Kndc1 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit