Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    YPT7 Yeast Protein Two 7 YPT7 deletion decreases replicative lifespan by 15% in the alpha strain [18340043]. Deletion of YPT7 cancels out replicative lifespan extension of 0.5% glucose restriction and results under DR also into a shorter replicative lifespan than under AL [18690010]. Budding yeast
    YHC3 Yeast Homolog of human Cln3 YHC3 deletion decreases 10-20% shortened lifespan [16435200]. Budding yeast
    yata yata mutation shortens the maximum lifespan by 68% and results in progressive deterioration of the nervous tissues and aberrant accumulation of Sec23 [19209226]. Fruit fly
    Xrcc6 X-ray repair complementing defective repair in Chinese hamster cells 6 XRCC5 and XRCC6 double knockout mice show decreased lifespan and signs of premature ageing without increase cancer incidence. House mouse
    VPS20 Vacuolar Protein Sorting 20 VPS20 deletion decreases mean and maximum replicative lifespan by 16% and 19%, respectively, and additionally cancels out the DR-induced replicative lifespan extension [22912585]. Budding yeast
    VMA2 Vacuolar Membrane Atpase 2 VMA2 deletion mutants have a reduced ΔΨ and mitochondrial morphology similar to aged cells. The restoration of the vacuolar acidity in daughter cells requires V-ATPase activity as it is eliminated in VMA2 deletion mutant cells [23172144]. VMA2 deletion mutation decreases the mean replicative lifespan by 80% in the alpha strain [18340043]. Deletion of VMA2 decreases mean, median and maximum replicative lifespan by 84%, 84% and 70%, respectively. DR (0.5% glucose restriction) does not extend the replicative lifespan of VMA2 and shortens it even more [23172144]. Budding yeast
    VAM7 VAcuolar Morphogenesis 7 VAM7 deletion decreases replicative lifespan under AL and blocked DR-mediated lifespan extension. Replicative lifespan decreases by 70% on DR in VAM7 deletion mutant [18690010]. Budding yeast
    VAC14 VACuole morphology and inheritance mutant 14 VAC14 mutants have a single vacuole and shortened lifespan on normal media [16293764]. Budding yeast
    ATG16 AuTophaGy related 16 Under AL atg16 mutation shortens chronological, but not replicative lifespan. 0.5% glucose DR extends chronological lifespan of atg16 mutants, but amino-acid DR does not extend the short chronological lifespan of atg16 mutants (similar to several other autophagy mutants). ADE4 deletion in atg16 mutants results only in a partial extension of chronological lifespan by 0.5% glucose DR. The long chronological lifespan of tor1 mutants requires ATG16 [20421943]. Budding yeast
    ubc-18 UBiquitin Conjugating enzyme 18 ubc-18 overexpression is unable to extend lifespan (possibly, UBC-18 is not limiting for WWP-1 function in lifespan). Loss of ubc-18 function by mutation or RNAi reduces lifespan at 25 degree Celsius, but only slightly at 20 degree Celsius. RNAi depletion of ubc-18 completely suppresses increased longevity of eat-2 mutants. RNAi depletion of ubc-18 has no effect on long lifespan of isp-1 or daf-2 mutants. Combined knockdown of wwp-1 and ubc-18 by RNAi does not shorten lifespan any further than RNAi of either single gene. Knockdown of ubc-18 suppresses extended lifespan of wwp-1 overexpression [19553937]. Nematode
    rut rutabaga Two rutabaga mutants, rut1 and rut2080, have significantly shortened lifespans [17369827]. Fruit fly
    Trx-2 thioredoxin-2 Trx-2 mutants have a 25% reduction in maximum lifespan and exhibit lower tolerance to oxidative stress while animals carrying multiple copies of Trx-2 exhibit higher tolerance [17567437]. Fruit fly
    IPT1 InositolPhosphoTransferase 1 Transposon-mediated mutation of IPT1 increases oxidative stress resistance and chronological lifespan by 40% [16527275]. IPT1 deletion decreases replicative lifespan by 30% in the alpha strain [19030232]. Budding yeast
    CDC7 Cell Division Cycle 7 Transient inactivation of CDC7 results in a shortened replicative lifespan [2698814]. CDC7 participates in silencing and RAS2 modulates its activity [1990268]. Budding yeast
    trx-1 ThioRedoXin 1 Thioredoxins regulate many cellular redox processes. trx-1 is mainly associated with neurons and is expressed in ASJ ciliated sensory neurons and to some extent also on the posterior-most internal cells. trx-1 reduces protein disulfides in the presence of a heterologous thioredoxin reductase. trx-1 null mutant display reduced mean and maximum lifespan [16387300]. Mutants with a deletion in the trx-1 gene display a decrease in lifespan and are sensitive to oxidative stress [16324156]. trx-1 overexpression extends lifespan in wild-type but not in eat-2 mutants. trx-1 deletion completely suppresses the lifespan extension caused by eat-2 mutation, but only partially suppresses that by daf-2 or osm-5 mutations. Ectopic expression of trx-1 in ASJ neurons (but not in the intestine) in trx-1 mutants rescues the lifespan-extension conferred by eat-2 mutation. trx-1 overexpression extends lifespan of wild-type but not in eat-2 mutants. trx-1 deletion almost completely suppresses lifespan extension induced by dietary deprivation (DD). DD upregulates trx-1 expression in ASJ neurons. DR activates trx-1 in ASJ neurons which in turn triggers a trx-1-dependent non-cell autonomous mechanism to extend adult lifespan [21334311]. Nematode
    SOD1 SuperOxide Dismutase 1 The overexpression of Sods, mitochondrial Sod2 and cytosolic CuZnSod (Sod1), in combination delays the age-dependent reversible inactivation of mitochondrial aconitase, a superoxide-sensitive enzyme, and extends chronological lifespan by 30% [12586694]. Deletion of SOD1 decreases replicative lifespan by 40% [17460215]. Overexpression of SOD1 with CCS1 levuates the level of Cn, Zn-Sod activity and increased chronological lifespan. However overexpression of SOD1 without high cooper or simultonous overexpression of CCS1 shortened both chronological and replicative lifespan [15659212]. Overexpression of SOD1 has no effect on replicative lifespan [10224252]. Deletion of SOD1 shortens replicative lifespan by approximately 40%. The magnitude of the decrease in lifespan does not appear to dependent on oxygen concentration in the atmosphere [12020810]. Deletion of SOD1 shortens replicative lifespan [10547026]. Deletion of SOD1 shortens replicative as well as chronological lifespan [10222047]. Cells with a deletion of SOD1 exhibit a profound defect in entry into and survival during stationary phase (i.e. chronological lifespan) in the W303-B strain [8647826; 10222047], which is partially suppressed by expression of human Bcl-2 [9199172]. Hypersensitivity to oxygene and significantly decreased replicative lifespan of SOD1 deletion can be ameliorated by exogenous ascorbate. If acorbate's negative effects of auto-oxidation are prevented by exchange of medium, ascorbate prolongs mean and maximum replicative lifespan in the atmosphere of air and pure oxygene [15621721]. SOD1 deletion causes sensitivity to hyperoxia as well as methionine and lysine auxotrohies [9199172]. Budding yeast
    kermit The disruption of kermit (alias dGIPC) function results in premature loss of locomotor activity and reduced mean lifespan [21029723]. Fruit fly
    Terc telomerase RNA component Telomerase null mice exhibit age-dependent telomere shortening and shortened lifespan with succeeding generations. Median lifespan is reduced by 26% in G6 Terc(-/-) mice compared to wild-type or G1-G3 Terc(-/-) (18 months vs. 24 months). G6 Tec(-/-) display hair greying, hair loss, and ulcerative skin lesions, as well as impaired response to wound healing and hematoitopitic ablation, and an increased incidence of cancer [10089885]. Cells from Terc(-/-) mice (G4 and upward) exhibit chromosomes lacking detectable teloemre repeats, aneuplody, and end-to-end fusions [9335332]. House mouse
    TEC1 Transposon Enhancement Control 1 Tec1 is a positive regulator of chronological lifespan. Absence of TEC1 causes a significant shortened chronological lifespan, but does not block chronological lifespan extension by rapamycin. TEC(AxY) mutation also reduces chronological lifespan, although not so pronounced as strains lacking TEC1. Rapamycin-induced chronological lifespan extension is almost completely blocked by TEC(AxY) allele [21840851]. Budding yeast
    TAE2 Translation Associated Element 2 TAE2 deletion decreases replicative lifespan by 30% in the a strain [18340043]. Budding yeast
    Rgn regucalcin Survival among make animals lacking Rgn (alias SMP30) is 50% at 180 days compared to 100% among controls [N. Maruyama, unpublished data]. SMP30-/- mutant mice are indstuguishibale form their SMP30+/+ littermates in terms of development and fertilization capacity [12368201]. However, -/- mice were more susceptible to liver injury after treatment with anti-FAS antibody. SMP30-/- hepatocytes cultures in vitro are more susceptible to apoptosis induced by tumor-necrosis factor (TNF-alpha) plus actinomycin D (ActD) than SMP30+/+ hepatocytes. House mouse
    SRS2 DNA helicase and DNA-dependent ATPase involved in DNA repair, needed for proper timing of commitment to meiotic recombination and transition from Meiosis I to II; affects genome stability by suppressing unscheduled homologous recombination SRS2 deletion mutants have a shortened mean replicative lifespan (by 50%) similar to sgs1 mutants [11290710]. Overexpression of SGS1 increases maximum, but not mean lifespan of SRS2 mutants [11861900]. Deletion of SRS2 is synthetical lethal in combination with deletion of SGS1 [11290710]. Budding yeast
    SOD2 SuperOxide Dismutase 2 SOD2 deletion decreases replicative lifespan by 72% [17460215]. SOD2 deletion decreases chronological lifespan [21076178]. Deletion of SOD2 decreases chronological lifespan in wild-type and abolishes chronological lifespan extension in sch9Delta mutants as well as decreases chronological lifespan in cyr1:mTn mutants [12586694]. Combined overexpression of SOD1 and SOD2 extends chronological lifespan by 30% in EG103 strain [12586694]. SOD2 deletion mutants are hypersensitive to oxygen and grow poorly in ethanol [10222047]. Budding yeast
    snap-1 SNAP (Soluble NSF Attachment Protein) 1 snap-1 RNAi in the adulthood reduces mean and maximum lifespan by 34 and 50%, respectively [23144747]. Nematode
    Sirt6 sirtuin 6 (silent mating type information regulation 2, homolog) 6 (S. cerevisiae) Sirt6 knockout mice develop signs of premature ageing including a short lifespan [16439206]. Overexpression of Sirt6 in male mice lengthens the median lifespan by 9.9-14.5% and maximum lifespan by 13.1-15.8% [22367546]. Mice without Sirt6 have a higher risk of gastrointestinal cancers. SIRT6 dampens cancer growth by repressing aerobic glycolysis (i.e. conversion of glucose to lactate; a major feature of cancer cells). Loss of Sirt6 increases the number, size and aggressiveness of tumors. Sirt6 loss leads to tumor formation even without activation of oncogenes. Transformed SIRT6-deficient cells exhibit increased glycolysis and tumor growth. Sirt6 inhibits the transcriptional activity of the oncogene Myc via corepression [23217706]. Sirt6 also protects against diet-induced obesity [http://www.biocompare.com/Life-Science-News/127206-Anti-Aging-Gene-Identified-As-Tumor-Suppressor-In-Mice-Research-Finds/]. House mouse
    • Page 1 of 13
    • 25 of 321 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit