Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    YPT7 Yeast Protein Two 7 YPT7 deletion decreases replicative lifespan by 15% in the alpha strain [18340043]. Deletion of YPT7 cancels out replicative lifespan extension of 0.5% glucose restriction and results under DR also into a shorter replicative lifespan than under AL [18690010]. Budding yeast
    VPS20 Vacuolar Protein Sorting 20 VPS20 deletion decreases mean and maximum replicative lifespan by 16% and 19%, respectively, and additionally cancels out the DR-induced replicative lifespan extension [22912585]. Budding yeast
    VMA2 Vacuolar Membrane Atpase 2 VMA2 deletion mutants have a reduced ΔΨ and mitochondrial morphology similar to aged cells. The restoration of the vacuolar acidity in daughter cells requires V-ATPase activity as it is eliminated in VMA2 deletion mutant cells [23172144]. VMA2 deletion mutation decreases the mean replicative lifespan by 80% in the alpha strain [18340043]. Deletion of VMA2 decreases mean, median and maximum replicative lifespan by 84%, 84% and 70%, respectively. DR (0.5% glucose restriction) does not extend the replicative lifespan of VMA2 and shortens it even more [23172144]. Budding yeast
    VAM7 VAcuolar Morphogenesis 7 VAM7 deletion decreases replicative lifespan under AL and blocked DR-mediated lifespan extension. Replicative lifespan decreases by 70% on DR in VAM7 deletion mutant [18690010]. Budding yeast
    ATG16 AuTophaGy related 16 Under AL atg16 mutation shortens chronological, but not replicative lifespan. 0.5% glucose DR extends chronological lifespan of atg16 mutants, but amino-acid DR does not extend the short chronological lifespan of atg16 mutants (similar to several other autophagy mutants). ADE4 deletion in atg16 mutants results only in a partial extension of chronological lifespan by 0.5% glucose DR. The long chronological lifespan of tor1 mutants requires ATG16 [20421943]. Budding yeast
    ubc-18 UBiquitin Conjugating enzyme 18 ubc-18 overexpression is unable to extend lifespan (possibly, UBC-18 is not limiting for WWP-1 function in lifespan). Loss of ubc-18 function by mutation or RNAi reduces lifespan at 25 degree Celsius, but only slightly at 20 degree Celsius. RNAi depletion of ubc-18 completely suppresses increased longevity of eat-2 mutants. RNAi depletion of ubc-18 has no effect on long lifespan of isp-1 or daf-2 mutants. Combined knockdown of wwp-1 and ubc-18 by RNAi does not shorten lifespan any further than RNAi of either single gene. Knockdown of ubc-18 suppresses extended lifespan of wwp-1 overexpression [19553937]. Nematode
    trx-1 ThioRedoXin 1 Thioredoxins regulate many cellular redox processes. trx-1 is mainly associated with neurons and is expressed in ASJ ciliated sensory neurons and to some extent also on the posterior-most internal cells. trx-1 reduces protein disulfides in the presence of a heterologous thioredoxin reductase. trx-1 null mutant display reduced mean and maximum lifespan [16387300]. Mutants with a deletion in the trx-1 gene display a decrease in lifespan and are sensitive to oxidative stress [16324156]. trx-1 overexpression extends lifespan in wild-type but not in eat-2 mutants. trx-1 deletion completely suppresses the lifespan extension caused by eat-2 mutation, but only partially suppresses that by daf-2 or osm-5 mutations. Ectopic expression of trx-1 in ASJ neurons (but not in the intestine) in trx-1 mutants rescues the lifespan-extension conferred by eat-2 mutation. trx-1 overexpression extends lifespan of wild-type but not in eat-2 mutants. trx-1 deletion almost completely suppresses lifespan extension induced by dietary deprivation (DD). DD upregulates trx-1 expression in ASJ neurons. DR activates trx-1 in ASJ neurons which in turn triggers a trx-1-dependent non-cell autonomous mechanism to extend adult lifespan [21334311]. Nematode
    sir-2.1 Yeast SIR related 1 sir-2.1 deletion slightly reduces lifespan of wild-type [16860373]. sir-2.1 overexpression extends lifespan by about 50% and this lifespan extension depends on DAF-16 activity as it is suppressed by mutation in daf-16 and it does not synergize with daf-2 [11242085]. sir-2.1 suppresses longevity of unc-13 and eat-2, but not daf-2 or unc-64 mutants. sir-2.1 is therefore partially required for lifespan extension from mutation of eat-2 [16860373], but is completely independent for lifespan extension from DR using a reduced feeding protocol [Kaeberlein et al. in press]. sDR increases lifespan of wild-type and sir-2.1 mutants to the same extent [19239417]. Overrexpression of sir-2.1 synergizes with TGF-beta mutation (daf-4 and daf-1) for dauer formation [11242085]. Nematode
    wwp-1 WW domain Protein (E3 ubiquitin ligase) 1 RNA interference of wwp-1 decreases median lifespan by 9% in wild-type animals and 24% in daf-2 mutants [18006689]. Loss of wwp-1 function by RNAi or mutation reduces lifespan at 25 degree Celsius, but not 20 degree Celsius. wwp-1 overexpression extends lifespan by up to 20%. Reduced levels of wwp-1 completely suppress the extended longevity of eat-2 mutants. Lifespan of wwp-1 mutants across entire food concentration range by bacterial dilution in liquid culture or on solid plates does not noticeable change. There is no difference in wwp-1 mRNA levels under AL and DR. RNAi reduction of pha-4, but not of daf-16 suppresses increased longevity by wwp-1 overexpression. Mutations in iron sulphur component of complex III, isp-1, increases longevity by reducing mitochondrial function. wwp-1 RNAi does not suppress the extended lifespan of isp-1 mutants and has only minor suppressive effects on lifespan of another mitochondrial mutant, clk-1, and in cyc-1 RNAi treated worms. RNAi depletion of wwp-1 has no effect on long lifespan of daf-2 mutants [19553937]. Nematode
    wnk-1 mammalian WNK-type protein kinase homolog 1 RNA interference of wnk-1 decreases lifespan by 9% and suppresses lifespan extension by eat-2 mutation [22829775]. Nematode
    phi-50 RNA interference of phi-50 decreases mean lifespan by 29% and suppresses lifespan extension by isp-1 and eat-2 mutation but does not significantly affect lifespan extension by daf-2 [22829775]. Nematode
    skn-1 SKiNhead 1 RNA interference of or mutations in skn-1 prevent the life-extension effects of dietary restriction [17538612]. skn-1 transgenes that overexpress a constitutive nuclear form of SKN-1 in the intestine extend the mean lifespan by 5-21%, independently of DAF-16 [18358814]. skn-1 mutation does not alter lifespan under AL, but cancels out the lifespan extension effect of lDR or food variation at all. Response to lDR in skn-1 mutant is restored by ectopic expression of skn-1 in ASI neurons and gut. Ectopic expression of skn-1b in ASI neurons rescued lDR longevity defects of skn-1. Ablation of ASI neurons completely suppresses the response to DR in wild-type or daf-16 mutants and cause a small increase in basal longevity of wild-type but not daf-16 mutants. lDR significantly increases SKN-1 expression in ASI neurons. lDR worms exhibit elevated respiration, which is absent in skn-1 mutants. skn-1 is necessary for increased respiration and the increase in respiration is necessary for lDR longevity effect, because two different inhibitors of mitochondrial electron transport chain complex III, myxothiazol and antimycin, suppress lDR longevity without shortening lifespan under AL. In contrast, the long life of a daf-2 mutant is not affected by antimycin. Some isoforms of SKN-1 are expressed from an operon downstream of bec-1. Beclin-1 mediates autophagy induced by nutrient deprivation. Therefore, skn-1 might be regulated by nutritional stress [17538612]. IF significantly extends lifespan of skn-1 mutants [19079239]. sDR extends lifespan of a skn-1 loss-of-function mutant (which displays a premature stop codon in all three isoforms) and wild-type to a similar extent [19239417]. skn-1(zu67) mutation decreases mean, median, and maximum lifespan by 11-23, 13-28 and 12-23%, respectively, and totally cancels out lifespan extension by ragc-1 RNAi [22560223]. Nematode
    hsf-1 Heat Shock Factor 1 RNA interference of hsf-1 suppresses normal dauer formation and life-extension due to insulin-like signaling [14668486]. hsf-1 overexpression extends mean, median, and maximum lifespan by 37, 35, and 29%[22737090]. hsf-1 RNAi abrogates lifespan extension by daf-2(e1370) mutation, but not eat-2(ad1116) or isp-1(qm150). HSF-1, like DAF-16, is required for daf-2 mutations to extend lifespan [12750521]. A mutant allele of hsf-1 slightly decreases lifespan under AL, but cancels out the lifespan extension effect of bDR. hsf-1 RNAi also prevents lifespan extension by bDR. bDR significantly reduces paralysis of Q35YFP or ABeta42 transgenic animals and hsf-1 RNAi totally cancels this effect. DR confers a general protective effect against proteotoxicity and promotes longevity by a mechanism involving hsf-1 [18331616]. Glucose or glycerol does not shorten the lifespan of hsf-1 mutants. Glucose treatment completely suppresses the long lifespan caused by hsf-1 overexpression [19883616]. sDR extends the lifespan of hsf-1 mutant with a premature stop codon, that eliminates activation domain, and that of wild-type to a similar extent [19239417]. hsf-1 RNAi attenuates lifespan extension by bDR, but only partially that of daf-2 mutation. hsf-1 RNAi attenuates protection against oxidative stress by bDR. hsf-1 expression is induced by bDR [19924292]. RNAi of hsf-1 shortens median and maximum lifespan by approximately 35%. hsf-1 RNAi animals exhibit phenotypes associated with accelerated aging (as assyed by Nomarsky microscopy) [12136014]. Nematode
    cpf-2 Cleavage and Polyadenylation Factor 2 RNA interference of cpf-2 decreases mean lifespan by 6% and suppresses lifespan extension by eat-2 mutation [22829775]. Nematode
    nekl-2 NEK (NEver in mitosis Kinase) Like 2 RNA intereference of nekl-2 decreases lifespan by 24% and suppresses lifespan extension by eat-2 mutation [22829775]. Nematode
    RIM15 Regulator of IME2 15 RIM15 deletion results in 50% reduction of maximal chronological lifespan [11292860] and consistently decreases chronological lifespan under AL [21076178]. Rim15 is required for chronological lifespan extension caused by deficiency in RAS2, TOR1, or SCH9, as well as by 0.5% glucose restriction, but not by water starvation [18225956]. Budding yeast
    pha-4 defective PHArynx development 4 pha-4 is required for multiple forms of DR. RNAi of pha-4 completely cancels out the lifespan extension of eat-2 mutation. Mutants of pha-4 do not respond to bacterial DR. Therefore, loss of pha-4 completely blocks the response to varying food concentration. Moreover, pha-4 expression is increased in response to DR in wild-type. pha-4 overexpression increases longevity of wild-type only slightly, but significant that of daf-16 mutants. The response to DR involves the PHA-4-dependent expression of sod-1, sod-2 and sod-5. Reduction of pha-4 does not suppress the long lifespan of daf-2 mutants or animals with defective electron transport chain [17476212]. IF significantly extends lifespan of pha-4 [19079239]. sDR extends lifespan of mutants with a temperature sensitive allele of pha-4 or pha-4 RNAi knockdown, but not daf-16 RNAi [19239417]. PHA-4 may play a role in the life-extending effects of dietary restriction. RNAi of pha-4 decreases lifespan of wild-type worms, but not of daf-2 mutants or of animals with defective electron transport chains. Nematode
    p53 Overexpression of wild-type p53 during adult life has no significant effect on lifespan. Expression of dominant-negative versions of p53 in adult neurons extends lifespan by 58% in females and by 32% in males and increases resistance to genotoxic stress and resistance to oxidative stress, but not to starvation or heat stress, while not affecting egg production or physical activity. Dominant negative p53 expression cancels out lifespan extension effect of DR, low calorie-food (5% SY). Muscle or fat body specific expression of a dominant negative form of p53 as well as globally lack of p53 decreases lifespan [16303568]. Loss of p53 activity slightly shortens the lifespan. Mutants that lack p53 survive well up to 50 days, but mortality rate increases relative to wild-type at later ages. p53 mutant animals are extremely sensitive to irradiation [12935877]. Expression of dominant-negative (DN) form of p53 in adult neurons, but not in muscle or fat body cells, extends median lifespan by 19% and maximum lifespan by 8%. The lifespan of dietary-restricted flies is not further extended by simultaneously expressing DN-DMp53 in the nervous system, indicating that a decrease in Dmp53 activity may be part of the DR lifespan-extending effect. Selective expression of DN-Dmp53 in only the 14 insulin-producing cell (IPCs) in the brain extends lifespan to the same extent as expression in all neurons and this lifespan extension is not additive with DR [17686972]. Fruit fly
    RAS2 Ras-like protein 2 Overexpression of RAS2 causes a 43% increase in mean and 18% increase in maximum lifespan as well as postpones the age-related increase in generation time. RAS2 deletion causes a 23% decrease in mean and a 30% decrease in maximum lifespan [8034612]. Deletion of RAS2 leads to a longer chronological lifespan [21076178]. Deletion of the RAS2 gene, which functions upstream of CYR1, doubles the mean chronological lifespan by a mechanism that requires Msn2/4 and Sod2 [12586694]. DR further extends chronological lifespan of ras2Delta [18225956]. Budding yeast
    AVT1 Amino acid Vacuolar Transport 1 Overexpressing or deleting AVT1 is sufficient to extend or shorten replicative lifespan, respectively [23172144]. Overexpression of AVT1 prevents mitochondrial dysfunction, prevents alterations in mitochondrial structure and ΔΨ of aged cells even through the vacuolar acidity is reduced in these cells. AVT1 overexpression extends the mean, median and maximum replicative lifespan by 28, 28, and 22%, respectively [23172144]. Deletion of AVT1 accelerates the development of age-induced mitochondrial dysfunction without effecting the kinetics of vacuolar acidity decline and prevents the suppression of mitochondrial dysfunction by VMA1 and VPH2 overexpression without affecting vacuolar acidity. AVT1 deletion decreases mean, median and maximum replicative lifespan by 21, 22, and 12%, respectively [23172144]. Budding yeast
    Thor Null mutation in Thor (alias d4E-BP) causes a significant decrease in longevity (-25% median lifespan in males). Thor is strongly upregulated during starvation. foxo and Thor null mutants are compromised in stress resistant. Stress resistance of foxo null mutants is rescued by Thor overexpression [16055649]. Thor is upregulated on the protein level in a foxo-independent manner upon DR, while it is transcriptional induced in a foxo-dependent fashion by starvation. Thor null mutants cancel out DR-induced lifespan extension, because mutants exhibit a diminished change in lifespan when nutrient conditions were varied. Ubiquitously expression of Thor rescued DR response in females and males. Thor null mutants have a wild-type similar reduction in egg production upon DR. Ubiquitously overexpression of wild-type Thor causes no change under AL, but an activated allele (with more than 3-fold increased binding activity to delF4E) significantly extends lifespan of females (weak allele) and females as well as males (strong allele). Mean lifespan is extended by 11 to 40%. Median lifespan of males and females is enhanced by by 11 and 22%, respectively. Maximum lifespan is extended by 16 and 18% for males and females, respectively. Under DR (0.25% YE) there is no lifespan extension, beyond the effect of DR alone, in all (wild-type, weak and strong) Thor alleles [19804760]. Lifespan of animals with increased Pten and 4E-BP activity in muscle exhibit and extended mean and maximum lifespan by 20% and 15.8% [21111239]. Fruit fly
    nlp-7 Neuropeptide-Like Protein nlp-7 RNAi or overexpression reduces oxidative stress resistance and shortens lifespan of wild-type under AL. nlp-7 RNAi significantly reduces extended lifespan of eat-2 mutants, but failed to block lifespan extension of age-1 or clk-1 mutants. Lifespan of nlp-7 mutants increases only moderately by sDR [19783783]. nlp-7 expression is induced under DR via the use of a chemically defined axenic medium [17023606] and by sDR [19783783]. Nematode
    daf-16 Abnormal DAuer Formation DAF-16, fork head-related transcription factor (daf-16) Mutations in daf-16 suppresses life-extension caused by mutations in daf-2 [8247153]. daf-16 is required for lifespan extension by mutation of daf-2 or age-1 [8247153]. RNAi against daf-16 decreases lifespan of wild-type, daf-2 or glp-1 mutants [22509016; 16530050]. Loss of function alleles of daf-16 shorten lifespan, but some alleles have lifespan equal to wild-type [8247153]. daf-16 mutation significantly reduces lifespan under AL (-20%), but does not prevent lifespan extension by sDR. In another experiment daf-16 mutation totally suppresses lifespan extension by sDR [16720740]. sDR does not stimulate DAF-16 translocation to the nucleus, but daf-16 mutation cancels out the ability of sDR to extend lifespan and to delay the decline in locomotor activity [17900900]. DR by bacterial dilution extends lifespan of daf-16 mutants [17538612]. daf-16 mutation decreases lifespan under AL, but fails to prevent bDR to further extend lifespan [18331616]. IF-induced lifespan-extension by either 24h/48h/72h per 4 days is significantly diminished in null mutants of daf-16. All these regimens extend lifespan of daf-16 to a lesser extent than that of wild-type. daf-16 partially mediates IF-induced longevity [19079239]. Glucose or glycerol does not shorten lifespan of daf-16 mutants [19883616]. daf-16 mutation cancels out the lifespan extension effect of sDR and PD, regardless of the concentration of bacteria or peptones. bDR significantly extends lifespan of daf-16 mutants, but to a lesser extent than that of wild-type. eat-2 mutation extends the lifespan of daf-16 mutants to the same extent than that of wild-type. Resveratrol extends lifespan of daf-16 mutants [19239417]. daf-16 RNAi completely blocks the lifespan extension by daf-2 mutation, but only partially by bDR. daf-16 RNAi attenuates protection against oxidative stress by bDR. daf-16 expression is induced by bDR [19924292]. Knockdown of daf-16 decreases mean and maximum lifespan by 50% and 54%, respectively [22509016]. DAF-16 reduces expression of rsks-1 and daf-15 [15253933; 22560223]. daf-16(mgDf47) decreases mean (18-37%) and maximum (29%) lifespan [18828672]. Overexpression of wild-type DAF-16 modestly increases lifespan by 20% [11747825], while overexpression of constitutive nuclear forms of DAF-16 increases lifespan only slightly [11381260]. daf-16(mu86) mutation decreases mean (44%) and maximum (18%) lifespan [15905404]. daf-16(mgDf47) decreases mean (18-37%) and maximum (29%) lifespan [18828672]. daf-16 mutants are dauer defective [7219552] and completely suppress all the phenotypes of daf-2 and age-1 mutations, including lifespan extension, dauer arrest, reduced fertility, and viability defects [8247153; 7789761; 9504918; 7789761]. Mutations in daf-16 also suppress lifespan extension of animals that have a germ line ablation [10360574]. Sex-specific lifespan potential requires daf-16 [10747056]. daf-16 mutation suppresses enhanced UV resistance as well as increase longevity of daf-2, daf-23, spe-26, and clk-1 mutants. Mutation in daf-16 does not alter the reduced fertility in spe-26. daf-16 mutants are more fertile than wild-type [8807294]. Nematode
    GTR1 GTp binding protein Resemblance 1 GTR1 deletion decreases mean and maximum replicative lifespan under AL by 36 and 51%, respectively, and cancels out the lifespan extending effect of DR [22912585]. Budding yeast
    dve-1 DVE (Defective proVEntriculus in Drosophila) homolog) 1 dve-1 RNAi attenuates lifespan extension by bDR, but only partially that of daf-2 mutation. dve-1 RNAi attenuates protection against oxidative stress by bDR. dve-1 expression is not induced by bDR [19924292]. Nematode
    • Page 1 of 2
    • 25 of 39 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit