Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Types: + -
  • symbol name observation species
    RPD3 Reduced Potassium Dependency 3 Deletion of the histone deacetylase gene RPD3 extends lifespan by 41%, independently of an intact Sir silencing complex (in the short lived YSK661 strain) [10512855]. Deletion of RPD3 extends replicative lifespan and there was no additive effect by neither 0.1% glucose nor amino acid restriction [12213553]. RPD3 deletion increases rDNA silencing in a partially SIR2-dependent manner [10082585]. Its effects on chromatin functional state were evidenced by enhanced silencing at the three known heterochromatic regions in the genome, the silent mating type (HM), subtelomeric, and rDNA loci, which occurred even in the absence of SIR3 [10512855]. Budding yeast
    RAS2 Ras-like protein 2 Overexpression of RAS2 causes a 43% increase in mean and 18% increase in maximum lifespan as well as postpones the age-related increase in generation time. RAS2 deletion causes a 23% decrease in mean and a 30% decrease in maximum lifespan [8034612]. Deletion of RAS2 leads to a longer chronological lifespan [21076178]. Deletion of the RAS2 gene, which functions upstream of CYR1, doubles the mean chronological lifespan by a mechanism that requires Msn2/4 and Sod2 [12586694]. DR further extends chronological lifespan of ras2Delta [18225956]. Budding yeast
    HXK2 HeXoKinase 2 Deletion of HXK2 extends mean and maximum replicative lifespan by about 53% and 33%, respectively. Limiting glucose availability by mutating HXK2 significantly extends replicative lifespan and provides a genetically model of DR [11000115]. HXK2 deletion increases oxygene consumption. Changes in gene expression HXK2 mutation are quite similar to those of dietary-restricted cells. In fact, HXK2 mutants have a transcriptional profile that significantly resembles DR cells and cell overexpressing HAP4 [12124627]. Budding yeast
    GPR1 G-Protein coupled Receptor 1 Deletion of GRP1 increases mean and maximum replicative lifespan by 41% and 26%, respectively. GRP1 deletion mutants have also longer chronological lifespan. Deletion of GPR1 extends replicative lifespan by reducing cAMP-PKA activity and provides a genetically model for DR [11000115]. Budding yeast
    GPA2 G Protein Alpha subunit 2 Deletion of GPA2 increases mean and maximum replicative lifespan by 40% and 26%, respectively [11000115]. Deletion of GPA2 extends replicative lifespan by reducing cAMP-PKA activity and provides a genetic model for DR [11000115]. Budding yeast
    CDC25 Cell Division Cycle 25 The CDC25-10 allele extends mean and maximum replicative lifespan by 34% and 18%, respectively, at 30 degree Celsius. cdc25-10 mutants have an extended replicative lifespan under AL. Growth on 0.5% glucose restriction does not further extend replicative lifespan of cdc25-10 mutants. CDC25 null mutant is not viable. CDC25 appears to act in the same genetic pathway as SIR2 and NPT1 and is suggested to be genetic model of DR [11000115]. Budding yeast
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit