Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    nlp-7 Neuropeptide-Like Protein nlp-7 RNAi or overexpression reduces oxidative stress resistance and shortens lifespan of wild-type under AL. nlp-7 RNAi significantly reduces extended lifespan of eat-2 mutants, but failed to block lifespan extension of age-1 or clk-1 mutants. Lifespan of nlp-7 mutants increases only moderately by sDR [19783783]. nlp-7 expression is induced under DR via the use of a chemically defined axenic medium [17023606] and by sDR [19783783]. Nematode
    cup-4 Coelomocyte UPtake defective 4 cup-4 RNAi or overexpession reduces oxidative stress resistance and shortens lifespan of wild-type under AL. cup-4 RNAi significantly reduces the extended lifespan of eat-2 mutants, but failed to block lifespan extension of age-1 or clk-1 mutants. Lifespan of cup-4 mutants increases only moderately by sDR [19783783]. Nematode
    ERG5 ERGosterol biosynthesis 5 Deletion of ERG5 decreases replicative lifespan by 35% in the a strain [18340043], but increases mean chronological lifespan by 26 - 116% (26, 40, 43, 62, 116) in diploid cells [21447998]. Deletion of ERG5 cancels out the replicative lifespan extension of 0.5% glucose restriction [18690010]. Budding yeast
    RAS2 Ras-like protein 2 Overexpression of RAS2 causes a 43% increase in mean and 18% increase in maximum lifespan as well as postpones the age-related increase in generation time. RAS2 deletion causes a 23% decrease in mean and a 30% decrease in maximum lifespan [8034612]. Deletion of RAS2 leads to a longer chronological lifespan [21076178]. Deletion of the RAS2 gene, which functions upstream of CYR1, doubles the mean chronological lifespan by a mechanism that requires Msn2/4 and Sod2 [12586694]. DR further extends chronological lifespan of ras2Delta [18225956]. Budding yeast
    p53 Overexpression of wild-type p53 during adult life has no significant effect on lifespan. Expression of dominant-negative versions of p53 in adult neurons extends lifespan by 58% in females and by 32% in males and increases resistance to genotoxic stress and resistance to oxidative stress, but not to starvation or heat stress, while not affecting egg production or physical activity. Dominant negative p53 expression cancels out lifespan extension effect of DR, low calorie-food (5% SY). Muscle or fat body specific expression of a dominant negative form of p53 as well as globally lack of p53 decreases lifespan [16303568]. Loss of p53 activity slightly shortens the lifespan. Mutants that lack p53 survive well up to 50 days, but mortality rate increases relative to wild-type at later ages. p53 mutant animals are extremely sensitive to irradiation [12935877]. Expression of dominant-negative (DN) form of p53 in adult neurons, but not in muscle or fat body cells, extends median lifespan by 19% and maximum lifespan by 8%. The lifespan of dietary-restricted flies is not further extended by simultaneously expressing DN-DMp53 in the nervous system, indicating that a decrease in Dmp53 activity may be part of the DR lifespan-extending effect. Selective expression of DN-Dmp53 in only the 14 insulin-producing cell (IPCs) in the brain extends lifespan to the same extent as expression in all neurons and this lifespan extension is not additive with DR [17686972]. Fruit fly
    • 5 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit