Interventions

  • name effect species mean median maximum
    (-)-epicatechin treatment Treatment with (-)-epidcatechin do no extend lifespan [20717869]. Worm
    (R)-N-(2-heptyl)-N-methylpropargylamine treatment Addition of 0.66 ng/fly/day (R)-N-(2-heptyl)-N-methylpropargylamine to a sucrose-based diet resulted in no significant effect on lifespan, but lifespan reduction due to galactose feeding is partially suppressed by supplementation with (R)-deprenyl or (R)-N-(2-heptyl)-N-methylpropargylamine [9972869]. Fly
    2-ME treatment Animals fed a diet supplemented with 2-mercaptoethanol (2-ME) exhibit an increased mean and maximum lifespan [6334792]. T-cell-dependent immune responses are higher in the 2-ME-fed mice compared to the controls when the animals are young. The accumulation of fluorescent products of lipid peroxidation damage is also delayed in the lymphocytes of the 2-ME-fed mice and tumor onset and incidence is reduced in these animals [6334792]. Mouse
    2-MEA treatment Addition of 1% by weight 2-MEA to the diet of male LAF mice, started shortly after weaning, increases average lifespan by approximately 30%, but does not extend maximum lifespan [5723482; 11795501]. Addition of 2-MEA to the maternal diet of female mice increases the lifespan of male and female offspring by 15 and 8%, respectively [Harman & Eddy, 1979; 11795501]. Addition of 2-MEA of an antioxidant mixture containing ethoxyquin and 2-MEA to the diet of dietary restricted mice shortens lifespan approximately 20% [2394907]. Mouse +30
    Apple polyphenol supplementation Supplemention of the diet with apple polyphenol significantly extends mean lifespan by 10% and is accompanied by up-regulation of SOD1, SOD2 and CAT as well as downregulation of MTH in aged animals [21319854]. Fly +10
    Apply polyphenol treatment Treatment with 100 microgram/mL apple polyphenol increases mean lifespan of wild-type N2 and FEM-1 by 12.0 and 5.3%, respectively [20717869]. Worm +5.3 to 12.0
    Ascrobate treatment Hypersensitivity to oxygene and significantly decreased replicative lifespan of SOD1 deletion can be ameliorated by exogenous ascorbate. If acorbate's negative effects of auto-oxidation are prevented by exchange of medium, ascorbate prolongs mean and maximum replicative lifespan in the atmosphere of air and pure oxygene [15621721]. Yeast
    Beauveriolide I treatment Treatment with beauveriolide I (20 microgram/mL) extends chronological lifespan in BY4741 by around 50% [22790951]. Yeast +50
    Black rice extract supplementation In fruit fly, 30 mg/ml black rice extract prolonges mean lifespan by 14% which is accompanied with mRNA up-regulation of SOD1, SOD2, CAT and Rpn11 Rpn11 and with downregulation of Mth [22930061]. Fly +14
    Black tea extract supplementation Supplementation of the diet with black tea extract extends the lifespan by 10% (from 51 to 56 days) and is associated with higher SOD1 and CAT expression [19770032]. Fly +10
    Blueberry extract supplementation Supplementation of the diet with 5 mg/mL blueberry extract significantly extends the mean lifespan by 10% and is accompanied by an up-regulation of superoxide dismutase (SOD), catalase (CAT), and Rpn11 and down-regulationg of Methuselah (MTH). Lifespan is only extended in Oregon-R wild-type but not in SOD(n108) or Cat(n1) mutant strains [22197903]. Fly +10
    C3 treatment Tris-malonic acid derivate of the fullerene C60 molecule (C3) increases the lifespan of Sod2(-/-) mice by 300% [15451059]. Mouse +300
    C60-olive oil treatment Oral administration of C60 dissolved in olive oil (0.8 mg/ml) at reiterated doses (1.7 mg/kg of body weight) for just about 7 months to rats not only does not entail chronic toxicity but it almost doubles the lifespan. The effects on lifespan is mainly due to the attenuation of age-associated increases in oxidative stress. Dissolved C60 is absorbed by the gastro-intestinal tract and eliminated in a few tens of hours [22498298]. C60-olive oil can increase the mean, median and maximum lifespan by 114, 91 and 74%. C60-olive oil extends the lifespan of animals with a probability of 0.999 and 0.995 with respect to water and olive oil treatments, respectively [22498298]. The GSSG/GSH ratio of animals treated by C60-oil is significantly less (about twice as less) as compared to controls [22498298]. Rat +113.8 +90.9 +73.7
    Carboxyfullerene SOD mimetic treatment Administration of a small-molecule synthetic enzyme superoxide dismutase mimetic to wild-type (i.e. non-transgenicm non-senescence accelerated) mice starting at middle age significantly extends lifespan and reduces age-associated oxidative stress and mitochondrial radical production. Treatment also improves performance on Morris water maze learning and memory task and therefore rescues age-related cognitive impairment [17079053].
    concA treatment The specific V-ATPase inhibitor concanatmycin A (concA) blocks VMA1 or VPH2 overexpression mutations ability to produce normal, tubular mitochondria. Treatment of young cells causes vacuolar acidity and loss of mitochondrial depolarization. Loss of ΔΨ is followed by mitochondrial fragmentation and aggregation that resembles mitochondrial phenotypes present in aged cells [23172144]. Yeast
    Curcumin treatment Curcumin increases lifespan in and is associated with reduced ROS and lipofuscin during aging. Curcumin lifespan extension is attributed to its antioxidative properties. Lifespan extension had effects on body size and pharyngeal pumping rate but not on reproduction. Lifespan-extension by curcumin is abolished in osr-1, sek-1, mek-1, skn-1, unc-43, sir-2.1 and age-1 mutants, whereas curcumin treatment prolongs lifespan of mev-1 and daf-16 mutants [21855561]. *C. elegans* feed low concentration of curcumin have a decreased lipofuscin levels and enhanced the resistance to heat stress and increased mean lifespan by 39% and a maximum lifespan extended by 21.4% [23325575]. In fruit fly that survive an average of 64 days, an increase of mean lifespan to 80 days occurs in flies, with females of one strain and males of another strain experiencing an extension in lifespan. The lifespan response to curcimun exhibits variation in male and female, although the compound extends lifespan in both genders [23325575]. Worm +39 +21.4
    Curcumin treatment In fruit fly, 0.5 an 1.0 mg/g curcumin in the diet increases mean lifespan by 6.2 and 25% in females and by 15.5 and 12.6 in males, respectively. Lifespan extension by curcumin was associated with the increased superoxide dismutase (SOD) activity, upregulation of Ms-SOD and CuZn-SOD genes, and the downregulation of *dInR*, *ATTD*, *Def*, *CecB* and, *DptB* genes as well as reduction of lipofuscin, malondialdehyde and lipid peroxidation [22653297; 23325575]. Curcumin prolongs life and enhances activity of fruit fly Alzheimer diseased flies [22348084]. Fly +6.2 to +25
    Cynomorium songaricum supplementation The yang-tonifying herbal medicine cynomorium songaricum Repr. (CS) supplementation to the diet extends both the mean and the maximum lifespan of adult females, but insignificantly that of males. In females, maximum lifespan (determined by the 90th survival percentile) is increased by up to 11.4% with 10 mg/mL CS and 5.7% with both 20 and 30 mg/mL Cs. Mean lifespan is significantly extended by 15, 18 and 11% upon treatment with 10, 20, and 30 mg/mL CS, respectively (all P <0.001). Increased lifespan by CS is correlated with higher resistance to oxidative stress and starvation and lower lipid hydroxyperoxids levels as well as accompanied by beneficial effects, such as improved mating readiness, increased fecundity, and suppresion of age-related learning impairment in aged animals [22844336]. Fly +11 to +18 +5.7 to +11.4
    D-chiro-inositol supplementation D-chiro-inositol supplementation to the diet extends adult longevity in both male and female animals. 20 microMolar dose of D-chiro-inositol extends median lifespan by 16.7 (p < 0.001) for males and 13% (p < 0.001) for females. Lifespan extension by D-chrio-inositol is accompanied by protection against oxidative and starvation stresses, improvement in health span, and not reduction in fecundity. Nuclear localization of foxo increases in D-chiro-inositol-fed animals [22843669]. Fly +13 to +16.7
    D-glucosamine treatment Addition of 0.5 mg/ml D-glucosamine to the growth media suppresses the short replicative lifespan and temperature sensitive growth of mpt5 mutant, but fails to extend the lifespan of wild-type cells [11805047]. Yeast
    DATS treatment Treatment with 5-10 μM DATS increases lifespan even when treatment is started during young adulthood. DATS increases the lifespan of daf-2 and daf-16 mutants, but not that of eat-2 mutants. DATS treatment leads to the induction of the skn-1 target gene gst-4 and this induction is dependent on skn-1. DATS effect on lifespan is dependent on skn-1 activity in both intestine and ASI neurons [21296648]. Fly
    DDS treatment Treatment with DDS either for the entire lifetime or only during the adult period after the L4 stage extends significantly increases mean and maximum lifespan [20974969] DDS causes the delay of aging, reduces lipofuscin accumulation and decreases the level of a mitochondrial complex as well as lowers oxygen consumption and enhances oxidative stress resistance [20974969]. DDS-conferred lifespan extension is independent of daf-16 and DR (eat-2 mutants) [20974969]. Worm
    DhHP-6 treatment Deuterohemin containing peptide deterohemin-AlaHisThrValGluLys (DhHP-6) significantly increases mean lifespan (P < 0.05), but not maximum lifespan. DhHP-6 also improves survival rate in acute heat-stress (35 degree Celsius) and rescues sensitivity to paraquat in acute oxidative stress. DhHP-6 treatment up-regulates SOD-3 and also regulates stress resistance genes such as hsp-16.1, hsp16.49 and sir-2.1 daf-16 and sir-2.1 genes are essential for the beneficial effect of DhHP-6 [20528576]. Worm
    Diabenol treatment In female NMRI and transgenic HER-2/neu mice supplementation of diabenol with drinking water 5 times a week since the age of 2 months, increases survival and inhibits spontaneous carcinogenesis. In NMRI diabenol does not influence body weight gain dynamics, food and water consumption, but slowed down age-related disturbances in estrous function and increases the lifespan of all and 10% most long-living ones. Diabenol treatment in NMRI mice also inhibits spontaneous tumor incidence (mammary and lymphomas mainly) and increases mammary tumor latency. Diabenol treatment slows down age-related changes in estrous function in HER-2/neu mice, but fails to influence survival and slightly inhibited the incidence and decrease the size of mammary adenocarcinoma metastasis into the lung [15754958]. Mouse
    DMSO treatment Treatment with 0.5 and 2% DMSO increases lifespan by 24.4 and 23.0%, respectively. 0.5% DMSO does not affect progeny number or lifespan under thermal stress. Treatment with 0.5% DMSO enhances the mRNA levels of hsp-16.2, hsp-70, lys-7, old-1, and sod-5 by 2.5, 2.9, 1.3, 2.3, and 4.5-fold, respectively, as well as the protein level of lys-7 by 1.5-fold. Lifespan extension confered by DMSO depends on sir-2.1 and daf-16 but not on eat-2 or hsf-1 [20828537]. Worm +23.0 to +24.4
    • Page 1 of 4
    • 25 of 79 interventions
    Interventions are an extension of GenAge and GenDR.