Positive feedback between transcriptional and kinase suppression in nematodes with extraordinary longevity and stress resistance.

Authors: Tazearslan C; Ayyadevara S; Bharill P; Shmookler Reis RJ

Abstract: Insulin/IGF-1 signaling (IIS) regulates development and metabolism, and modulates aging, of Caenorhabditis elegans. In nematodes, as in mammals, IIS is understood to operate through a kinase-phosphorylation cascade that inactivates the DAF-16/FOXO transcription factor. Situated at the center of this pathway, phosphatidylinositol 3-kinase (PI3K) phosphorylates PIP(2) to form PIP(3), a phospholipid required for membrane tethering and activation of many signaling molecules. Nonsense mutants of age-1, the nematode gene encoding the class-I catalytic subunit of PI3K, produce only a truncated protein lacking the kinase domain, and yet confer 10-fold greater longevity on second-generation (F2) homozygotes, and comparable gains in stress resistance. Their F1 parents, like weaker age-1 mutants, are far less robust-implying that maternally contributed trace amounts of PI3K activity or of PIP(3) block the extreme age-1 phenotypes. We find that F2-mutant adults have <10% of wild-type kinase activity in vitro and <60% of normal phosphoprotein levels in vivo. Inactivation of PI3K not only disrupts PIP(3)-dependent kinase signaling, but surprisingly also attenuates transcripts of numerous IIS components, even upstream of PI3K, and those of signaling molecules that cross-talk with IIS. The age-1(mg44) nonsense mutation results, in F2 adults, in changes to kinase profiles and to expression levels of multiple transcripts that distinguish this mutant from F1 age-1 homozygotes, a weaker age-1 mutant, or wild-type adults. Most but not all of those changes are reversed by a second mutation to daf-16, implicating both DAF-16/ FOXO-dependent and -independent mechanisms. RNAi, silencing genes that are downregulated in long-lived worms, improves oxidative-stress resistance of wild-type adults. It is therefore plausible that attenuation of those genes in age-1(mg44)-F2 adults contributes to their exceptional survival. IIS in nematodes (and presumably in other species) thus involves transcriptional as well as kinase regulation in a positive-feedback circuit, favoring either survival or reproduction. Hyperlongevity of strong age-1(mg44) mutants may result from their inability to reset this molecular switch to the reproductive mode.

Keywords: Animals; Caenorhabditis elegans/genetics/*physiology; Caenorhabditis elegans Proteins/genetics/*metabolism; *Down-Regulation; Female; Longevity; Male; Phosphatidylinositol 3-Kinases/genetics/*metabolism; Phosphatidylinositol Phosphates/metabolism; Signal Transduction; Stress, Physiological; Transcription Factors/genetics/metabolism; *Transcription, Genetic
Journal: PLoS genetics
Volume: 5
Issue: 4
Pages: e1000452
Date: April 11, 2009
PMID: 19360094
Select reference article to upload


Citation:

Tazearslan C, Ayyadevara S, Bharill P, Shmookler Reis RJ (2009) Positive feedback between transcriptional and kinase suppression in nematodes with extraordinary longevity and stress resistance. PLoS genetics 5: e1000452.


Study
Update (Admin) | Auto-Update

Comment on This Data Unit