Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans.

Authors: Johnson TE
Year: 1987
Journal: Proceedings of the National Academy of Sciences of the United States of America
Abstract: The aging process has been dissected by analysis of genetic variants of the nematode Caenorhabditis elegans. Long-lived recombinant inbred lines were generated; some of these lines have mean and maximum life spans up to 70% longer than wild type. Longer life results from a slowing of the characteristic exponential increase in mortality rate that is typical of aging populations in all species. The length of developmental periods and the length of the reproductive period are unrelated to increased life span. Lengthened life is due entirely to an increase in postreproductive life span. Development, reproduction, and life span are each under independent genetic control. General motor activity decays linearly with chronological age in all genotypes. The decay in general motor activity is correlated with and a predictor of life span, suggesting that both share at least one common rate-determining component.
Reference

Integration:

Created on Nov. 5, 2012, 5:56 p.m.
Not linked
Integrated: False

No notes
Species: Nematode

Experiments: 0
Interventions:
Edit study (Admin) | Add experiment to study (Admin) | Delete study

Comment on This Data Unit