WWP-1 is a novel modulator of the DAF-2 insulin-like signaling network involved in pore-forming toxin cellular defenses in Caenorhabditis elegans.

Authors: Chen CS; Bellier A; Kao CY; Yang YL; Chen HD; Los FC; Aroian RV
Year: 2010
Journal: PloS one
Abstract: Pore-forming toxins (PFTs) are the single largest class of bacterial virulence factors. The DAF-2 insulin/insulin-like growth factor-1 signaling pathway, which regulates lifespan and stress resistance in Caenorhabditis elegans, is known to mutate to resistance to pathogenic bacteria. However, its role in responses against bacterial toxins and PFTs is as yet unexplored. Here we reveal that reduction of the DAF-2 insulin-like pathway confers the resistance of Caenorhabditis elegans to cytolitic crystal (Cry) PFTs produced by Bacillus thuringiensis. In contrast to the canonical DAF-2 insulin-like signaling pathway previously defined for aging and pathogenesis, the PFT response pathway diverges at 3-phosphoinositide-dependent kinase 1 (PDK-1) and appears to feed into a novel insulin-like pathway signal arm defined by the WW domain Protein 1 (WWP-1). In addition, we also find that WWP-1 not only plays an important role in the intrinsic cellular defense (INCED) against PFTs but also is involved in innate immunity against pathogenic bacteria Pseudomonas aeruginosa and in lifespan regulation. Taken together, our data suggest that WWP-1 and DAF-16 function in parallel within the fundamental DAF-2 insulin/IGF-1 signaling network to regulate fundamental cellular responses in C. elegans.
Reference

Integration:

Created on Nov. 5, 2012, 5:56 p.m.
Not linked
Integrated: False

No notes
Species: Nematode

Experiments: 0
Interventions:
Edit study (Admin) | Add experiment to study (Admin) | Delete study

Comment on This Data Unit