Seven sirtuins for seven deadly diseases of aging.

Authors: Morris BJ
Year: 2012
Journal: Free radical biology & medicine
Abstract: Sirtuins are a class of NAD(+)-dependent deacetylases having beneficial health effects. This extensive review describes the numerous intracellular actions of the seven mammalian sirtuins, their protein targets, intracellular localization, the pathways they modulate, and their role in common diseases of aging. Selective pharmacological targeting of sirtuins is of current interest in helping to alleviate global disease burden. Since all sirtuins are activated by NAD(+), strategies that boost NAD(+) in cells are of interest. While most is known about SIRT1, the functions of the six other sirtuins are now emerging. Best known is the involvement of sirtuins in helping cells adapt energy output to match energy requirements. SIRT1 and some of the other sirtuins enhance fat metabolism and modulate mitochondrial respiration to optimize energy harvesting. The AMP kinase/SIRT1-PGC-1alpha-PPAR axis and mitochondrial sirtuins appear pivotal to maintaining mitochondrial function. Downregulation with aging explains much of the pathophysiology that accumulates with aging. Posttranslational modifications of sirtuins and their substrates affect specificity. Although SIRT1 activation seems not to affect life span, activation of some of the other sirtuins might. Since sirtuins are crucial to pathways that counter the decline in health that accompanies aging, pharmacological agents that boost sirtuin activity have clinical potential in treatment of diabetes, cardiovascular disease, dementia, osteoporosis, arthritis, and other conditions. In cancer, however, SIRT1 inhibitors could have therapeutic value. Nutraceuticals such as resveratrol have a multiplicity of actions besides sirtuin activation. Their net health benefit and relative safety may have originated from the ability of animals to survive environmental changes by utilizing these stress resistance chemicals in the diet during evolution. Each sirtuin forms a key hub to the intracellular pathways affected.
Reference

Integration:

Created on Feb. 2, 2013, 9:36 p.m.
Not linked
Integrated: False

No notes
Species: ?

Experiments: 0
Interventions:
Edit study (Admin) | Add experiment to study (Admin) | Delete study

Comment on This Data Unit