Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals.

Authors: Moskovitz J; Bar-Noy S; Williams WM; Requena J; Berlett BS; Stadtman ER
Year: 2001
Journal: Proceedings of the National Academy of Sciences of the United States of America
Abstract: Oxidation of proteins by reactive oxygen species is associated with aging, oxidative stress, and many diseases. Although free and protein-bound methionine residues are particularly sensitive to oxidation to methionine sulfoxide derivatives, these oxidations are readily repaired by the action of methionine sulfoxide reductase (MsrA). To gain a better understanding of the biological roles of MsrA in metabolism, we have created a strain of mouse that lacks the MsrA gene. Compared with the wild type, this mutant: (i) exhibits enhanced sensitivity to oxidative stress (exposure to 100% oxygen); (ii) has a shorter lifespan under both normal and hyperoxic conditions; (iii) develops an atypical (tip-toe) walking pattern after 6 months of age; (iv) accumulates higher tissue levels of oxidized protein (carbonyl derivatives) under oxidative stress; and (v) is less able to up-regulate expression of thioredoxin reductase under oxidative stress. It thus seems that MsrA may play an important role in aging and neurological disorders.
Reference

Integration:

Created on Nov. 6, 2012, 10:53 a.m.
Not linked
Integrated: False

No notes
Species: House mouse

Experiments: 0
Interventions:
Edit study (Admin) | Add experiment to study (Admin) | Delete study

Comment on This Data Unit