Interventions

  • name effect species mean median maximum
    30% Dietary restriction 30% dietary restriction starting at 2 months of age increases overall, average, median and maximal lifespan. Knockout of Ghr failed to respond with lifespan extension to this regimen [16682650]. Mouse
    Methionine restriction A diet with reduced methionine content extends lifespan and increases body fat [15924568]. Mouse
    Hells mutation A hypomorphic deletion of helicase domains 3, 4 and part of 2, leads to expression of a C-terminal truncated Hells protein causing an extremely short lifespan. with 60% of homozyogous mutants dying after birth and remaining 40% surviving up to seven weeks (around 25 days) [15105378]. Hells disruption results in genomic hypomethylation, de-repression of silenced genes, and premature aging, characterized by decreased proliferation, increased replicative senescence, and altered expression of Bmi-1 and p16INK4a. Hells mutant exhibit significant hypoglycemia, low birth weight and growth retardation, and signs of premature aging such as greying hair and balding, reduced fat deposition, unstable gait, cachexia, and kyphosis [15105378]. Mouse
    Cisd2 overexpression A persistent level of Cisd2 achieved by transgenic expression extends mean, median and maximum lifespan without any apparent deleterious side effects [22661501]. Mouse
    Ctf1 knockout Absence of Ctf1 is associated with decreased arterial fibrosis, stiffness mad senescence and increased longevity. Ctf1-null mice have a decrease in arterial stiffness and decrease in levels of inflammatory, apoptotic and senescence, whereas telomere-linked and DNA repair proteins as well as antioxidant enzyme activities are increased. The median lifespan of Ctf1-null mice is increased by 5 month (18%) [23172930]. Wild-type and Ctf1-null mice exhibit an increase of senescence markers (p53, Mdm2, p21, and p16) with age but are lower in Ctf1-null mice. Ctf1-null mice have a diminished vascular NFκB signaling, lower inflammation and oxidative stress and reduced senescence. Ctf1-null mice have a 12% increase in body weight, 130% increased adiponectin levels and 51% decreased leptin concentrations [23172930]. Mouse +18
    Acacb knockout Acacb-null animals (alias Acc2-/-) exhibit upon regular diet an increase triglyceride breakdown, leaner phenotype, increased insulin sensitivity and no effect on lifespan [17923673]. Mouse
    Adcy5 knockout Adcy5 knockout mice are to cardiac stress and have an increased median lifespan of 30% as well as an increased maximal lifespan of 12%. Further, they are also protected from age-related reduced bone density and susceptibility to fractures, and reduced cardiac function [17662940]. Mouse +30 +12
    2-MEA treatment Addition of 1% by weight 2-MEA to the diet of male LAF mice, started shortly after weaning, increases average lifespan by approximately 30%, but does not extend maximum lifespan [5723482; 11795501]. Addition of 2-MEA to the maternal diet of female mice increases the lifespan of male and female offspring by 15 and 8%, respectively [Harman & Eddy, 1979; 11795501]. Addition of 2-MEA of an antioxidant mixture containing ethoxyquin and 2-MEA to the diet of dietary restricted mice shortens lifespan approximately 20% [2394907]. Mouse +30
    2-ME treatment Animals fed a diet supplemented with 2-mercaptoethanol (2-ME) exhibit an increased mean and maximum lifespan [6334792]. T-cell-dependent immune responses are higher in the 2-ME-fed mice compared to the controls when the animals are young. The accumulation of fluorescent products of lipid peroxidation damage is also delayed in the lymphocytes of the 2-ME-fed mice and tumor onset and incidence is reduced in these animals [6334792]. Mouse
    Atm knockout Atm-deficient mice are viable, retarded in growth, infertile (male produce no mature sperm and female no gametes), display neurological dysfunction, and exhibit severe defects in T cell maturation while going on to develop thymomas [8917548; 8689683]. The majority of mutant mice rapidly develop thymic lymphomas and die before 4 months of age [8843194]. Cells of Atm(-/-) mice exhibit slow growth also in culture and premature senescence, telomeres are extensively shortened in multiple tissues [8689683]. Mice mutant for Atm and Terc display progressive multi-organ system compromise and features of accelerated aging [12540856]. Mouse
    Bub1b mutation Bub1b mutation decreases median lifespan by 60% (from 15 to 6 months). Bub1b mutant mice develop many phenotypes suggestive of accelerated aging, including: progressive bilateral cataracts, substantial loss of sub dermal adipose tissue, spinal kyphosis, muscle atrophy, and decreased wound healing. Moreover, there is a pronounced increase in senescent associated Beta-galactosidase expression in late generation Bub1b mutant mice, indicative of increased rate of cellular senscence. Homozyogous knockout of Bub1b results in lethality, while heterozygous animals exhibit no aging phenotypes [15208629]. Mouse -60
    Metformin treatment Chronic treatment of female transgenic HER-2/neu mice with metformin slightly decreases food consumption but fails to reduce body weight or temperature, slows down age-related rise in blood glucose and triglycerides level, as well as the age-related switch-off of estrous function, prolongs mean lifespan by 8% (p < 0.05), the mean lifespan of last 10% survivors by 13.1% and maximum lifespan by 1 month. Metformin treatment significantly decreases incidence and size of mammary adenocarcinomas and increases the mean latency of the tumors [16125352]. Chronic treatment of female outbred SHR mice with metformin slightly modified food consumption but decreases the body weight after the age of 20 months, slows down the age-related switch-off of estrous function, increases mean lifespan by 37.8% mean lifespan of the last 10% survivor by 20.8%, and maximum lifespan by 2.8 month (+10.3%). Treatment with metformin fails to influence blood estradiol concentration and spontaneous tumor incidence in female SHR mice [18728386]. In female SHR mice, metformin increases lifespan lifespan and postpones tumors when started at young and middle but not at old age. Chronic treatment of female outbred SHR mice with metformin started at the age of 3, 9 or 15 months decreases body temperature and postpones age-related switch-off of estrous function. Treatment with metformin started at the age of 3 months increases mean lifespan by 14% and maximum lifespan by 1 month. Treatment started at the age of 9 months insignificantly increases lifespan by only 6%, whereas the treatment started at the age of 15 months fails to increase lifespan. The mean lifespan of tumor-free mice increases by 21% (started at 3 months), by 7% (started at 9 months) and in contrast is reduced by 13% (started at 15 months). If started at 3 and 9 months, metformin delays the first tumors by 22% and 25%, correspondingly [21386129]. Transgenic FVB/N female mice carrying HER-2/neu mammary cancer gene receiving metformin with drinking water 5 days a week starting from the age of 2 months exhibit a slight reduced food consumption without change in water consumption and dynamics of weight gain. Their mean lifespan increases by 8% in 10% of the long-lived mice it is prolonged y 13.1% and the maximum lifespan is prolonged by 1 month. The total incidence of mammary adenocarcinoma and their multiplicity does not change under the effect of metformin, while the latency of tumor development increases and the mean diameter of tumors decreases [16224592]. Chronic treatment of inbred 129/Sv mice with metformin slightly modifies food consumption but fails to influence the dynamics of body weight, decreases by 13.4% the mean lifespan of make mice and slightly increases the mean lifespan of female mice (by 4.4%). Metformin treatment fails to influence tumor incidence in male 129/Sv mice, decreases by 3.5 times the incidence of malignant neoplasms in female mice while somehowwhat stimulate formation of benign vascualr tumors in the latter [21164223]. Mouse
    Cisd2 knockout Cisd2 knockout shortens lifespan resulting in premature aging [19451219]. Mouse
    Decreased Trp53 Decreased activity of Trp53 results in increased cancer and decreased apoptosis. Mouse
    Atr knockout Deletion of Atr in young adults eliminates 80-90% of proliferating cells and results in several age-related phenotypes accompanied by a depletion of stem and progenitor cells and exhaustion of tissue renewal and homeostatic capacity [18371340]. Atr mutant mice (so called Seckle mice) exhibit high levels of replicative stress during embryogenesis, when proliferation is widespread, but this is reduced to marginal amounts in postnatal life. In spite of this decrease, adult Seckel mice display accelerated aging, which is further aggravated in the absence of p53. Seckel mice die in less than half a year, exhibit pancytopenia, cachexia and signs of premature aging, including hair graying, kyphosis, osteoporosis, accumulation of fat in the bone marrow, decreased density of hair follicles and thinner epidermis [19620979]. Mouse
    Brca1 deletion Deletion of Brca1 causes senescence in mutant embryos and cultured cells and tumorigenesis and signs of premature aging in adults [12533509]. Brca1 heterozygous seem to have shortened lifespan with 70% of tumor incidence. Lymphoma, but not ovarian and mammary gland tumors, occurs commonly in these animals. After a whole-body exposure to ionizing radiation, Brca1 heterozygous mice have a 3-5-fold higher incidence to ovarian tumors, but not lymphoma, when compared with Brca1(+/+) mice [17420720]. Mouse
    Cdkn1a knockout Deletion of Cdkna1 (alias p21) prolongs the lifespan of telomerase-deficient mice with dysfunctional telomeres and improves the repopulation capacity and self-renewal of hematopoietic stem cells [17143283]. The p21(-/-) strains like the Cdkn1a(tmi/Tyj) exhibits enormous regenerative capacities as it closes ear holes similar to MRL mice [20231440; 21722344]. Mouse
    Foxm1 deletion Deletion of Foxm1 causes age-related deterioration in liver regeneration [14647066]. Mouse
    Heterozyogous fat-specific Insr knockout (FIRKO) Deletion of Insr specifically in adipose tissue results in a 15-18% increase in mean, median and maximum lifespan. Fat-specific insulin-receptor knockout (FIRKO) reduces fat mass and protects against age-related obesity and its subsequent metabolic abnormality, without an decrease in food intake. Both male and female FIRKO mice have an increase in mean lifespan of around 134 days (18%), with parallel increases in median and maximum lifespan. FIRKO mice consume the same amount of food on per animal basis as control littermates, but have 15-25% lower body-mass and 50-70% reduced fat mass [12543978]. Disruption of Insr in all tissues reults in neonatal lethality [8612577]. Mouse +15 to +18 +15 to +18 +15 to +18
    Dietary restriction on high-fat diet Dietary restriction on a high-fat diet increases both mean and maximum lifespan by 36% compared to the high-fate diet control group [22509016]. Mouse +36 +36
    Dietary restriction on low-fat diet DR under a low-fat diet increases mean and maximum lifespan by 20% and 25%, respectively [22509016]. Mouse +20 +25
    Drd4 knockout Drd4 knockout mice, when compared with wild-type and heterozygous mice, display a 7 - 9.7% decrease in lifespan, reduced spontaneous locomotor activity, and no lifespan increase when reared in an enriched environment [23283341]. Mouse -7 to -9.7
    Efemp1 knockout Efemp1 knockout mice exhibited an early onset of aging-associated phenotypes including a 20% shorted median lifespan and 30% shorter maximum lifespan, decreased body mass, lordokyphosis, reduced hair growth, and atrophy [17872905]. Mouse +20 +30
    Fgf23 knockout Fgf23 knockouts have a short lifespan and display premature aging-like symptoms including kyphosis, muscle wasting, osteopenia, emphysema, uncoordinated movement, atherosclerosis, and atrophy of the intestinal villi, skin, thymus, and spleen [16436465]. Lack of Fgf23 activities results in extensive premature aging-like features and early mortality of Fgf-23(-/-) mice, while restoring the systemic effects of FGF-23 significantly ameliorates these phenotypes, with the resultant effect being improved growth, restored fertility, and significantly prolonged survival of double mutants [18729070]. Mouse
    Ghr knockout Ghr knockouts (the so called Laron mice) are dwarfs with significantly extended lifespan by 40-50% [12933651]. Ghr-/- mice are significantly longer lived as Ghr+/+ or Ghr+/- mice (by 40-50%) in both females and males [10875265; 19370397]. 30% DR fails to affect overall survival, average or median long-lifespan of Growth hormone receptor knockout (GHRKO) mice and increased maximal lifespan only in females. Insulin sensitivity in GHRKO mutants is greater than in wild-type and is not further increased by DR [16682650]. Intermittent fasting also fails to extend the long lifespan of GHRKO mice [19747233]. Lifespan of mice with a deletion in the Ghr gene live almost 5 years [21123740]. In C57BL/6J this mutation increases life expectancy by 16 to 26% depending on gender [12933651] and in mice of mixed genetic background the increases amounted to 36-55% [9371826]. Serum levels of GH are elevated in mutant mice [9371826] and mutants are smaller than wild-type. IGF-1 and IGFBP-3 levels are also reduced in Ghr mutant mice [10875265]. The age-associated decline in memory retention is delayed in Ghr mutants [11336996]. Mouse +16 to +55
    • Page 1 of 4
    • 25 of 97 interventions
    Interventions are an extension of GenAge and GenDR.