Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    miR-214 microRNA 214 Expression increases with age in mouse liver. The miRNA downregulates detoxification and regeneration genes, which may contribute to aging [18561983]. House mouse
    Mir669c microRNA 669c Expression increases with age in mouse liver. The miRNA downregulates detoxification and regeneration genes, which may contribute to aging [18561983]. House mouse
    Mir1 miR-1 is associated with stem cell differentiation in mouse and human ESCs [18371447]. House mouse
    Mir133 miR-133 is associated with stem cell differentiation in mouse and human ESCs [18371447]. House mouse
    MIR20A microRNA 20a Overexpression of MiR-20a in mouse embryonic fibroblasts induces senescence by lowering Lrf (a transcriptional repressor of the Mdm2 inhibitor p19ARF [15662416; 9529248]) protein levels and in turn increasing p19ARF levels [18596985]. House mouse
    • 5 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit