Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Species: + -
  • symbol name observation species
    hsa-let-7c microRNA let-7c let-7c is downregulated in prostate cancer, which increases cell proliferation [22479342]. More specifically, let-7c is a regulator of androgen receptor (AR), which plays a role in the development of prostate cancer [22128178]. Human
    hsa-let-7a microRNA let-7a A tumor-suppressor downregulated in different types of cancer. Let-7a binds to 3'-UTR region of RAB40C, thus leading to a decrease in cell proliferation and an increase of G1 arrest in human gastric carcinomas [20809749, 21349817]. In human breast cancer, evidence suggests that members of let-7 family inhibit breast cancer cell migration by targeting genes responsible for actin dynamics [23339187]. Moreover, let-7a directly targets CCR7, a receptor that promotes invasiveness of cancer cells [23335963] Human
    Atm Ataxia telangiectasia mutated homolog (human) Atm-deficient mice are viable, retarded in growth, infertile (male produce no mature sperm and female no gametes), display neurological dysfunction, and exhibit severe defects in T cell maturation while going on to develop thymomas [8917548; 8689683]. The majority of mutant mice rapidly develop thymic lymphomas and die before 4 months of age [8843194]. Cells of Atm(-/-) mice exhibit slow growth also in culture and premature senescence, telomeres are extensively shortened in multiple tissues [8689683]. Mice mutant for Atm and Terc display progressive multi-organ system compromise and features of accelerated aging [12540856]. House mouse
    Cdkn2a cyclin-dependent kinase inhibitor 2A Cdkn2a encodes different transcripts involved mostly in cell cycle regulation and cellular senescence [12882406], but it can also act as a tumor suppressor. Its expression level increase with age in rodents [15520862]. super-Ink4a/Arf mice carrying a transgenic copy of a large genomic segment containing an intact and complete copy of the Cdkn2a (a.k.a. Ink4a/Arf) gene are significantly protected from cancer and had no indication of accelerated aging. Cells derived from super-Ink4a/Arf mice have increased resistance to in vitro immortalization and oncogenic transformation [15520276]. Loss of Cdkn2a in mice results in tumour susceptibility [11544530]. Mice deficient in Cdkn2a have smaller age-related decline in self-renewal potential as this process is associated with increasing levels of Cdkn2a [16957738]. Increased levels of p16 are associated with aging (Krishnamurthy et al., 2006; Molofsky et al., 2006) and a bona fide marker of cellular senescence (Collado et al., 2007). p16INK4a accumulates in many tissues as a function of advancing age (Krishnamurthy et al., 2004; Nielsen et al., 1999; Zindy et al., 1997) and is an effector of senescence (Campisi, 2003; Park et al., 2004), p16INK4a is a potent inhibitor of proliferative kinase Cdk4 (Lowe and Sherr, 2003) which is essential for pancreatic ?-cell proliferation in adult mammals (Rane et al., 1999; Tsutsui et al., 1999). p16INK4a constrains islet proliferation and regeneration in an age-dependent manner. Expression of the p16INK4a transcript is enriched in purified islets compared with the exocrine pancreas and islet-specific expression of p16INK4a increases markedly with aging (Krishnamurthy et al., 2006). Aging in mammals is associated with reduced regenerative capacity in tissues that contain stem cells (Chien and Karsenty, 2005) which is probably partially caused by senescence of progenitors with age (Campisi, 2005; Lombard et al., 2005). Progenitor proliferation in subventricular zone and neurogenesis in the olfactory bulb as well as multipotent progenitor frequency and self-renewal potential, all decline with ageing the mouse forebrain. The decline in progenitor frequency and function correlate with increased expression of p16INK4a (Molofsky et al., 2006). Aging p16INK4a-deficient mice exhibit a significantly smaller decline in subventricular zone proliferation, olfactory bulb neurogenesis and the frequency and self-renewal potential of multipotent progenitors (Molofsky et al., 2006). p16 expression in skin cells is significantly lower the the group that has a strong family history of longevity. As such a younger biological age associates with lower levels of p16INKfa positive cells [22612594]. p16 expression increases exponentially with age. Expression of p16INK4a with age does not predict cancer development. p16INK4a activation is a characteristic of all emerging cancers [http://denigma.de/url/3n]. House mouse
    Brca1 Breast cancer 1 Deletion of Brca1 causes senescence in mutant embryos and cultured cells and tumorigenesis and signs of premature aging in adults [12533509]. Brca1 heterozygous appear to have shortened lifespan with 70% of tumor incidence. Lymphoma, but not ovarian and mammary gland tumors, occurs commonly in these animals. After a whole-body exposure to ionizing radiation, Brca1 heterozygous mice have a 3-5-fold higher incidence to ovarian tumors, but not lymphoma, when compared with Brca1(+/+) mice [17420720]. House mouse
    Fxn frataxin Disruption results in reduced lifespan, increased oxidative stress, impaired respiration, and the development of hepatic tumors [16278235]. House mouse
    hsa-let-7b microRNA let-7b Let-7b, a member of the let-7 group, appears to be a tumor-suppressor. In acute lymphoblastic leukemia, let-7b is severely downregulated and its overexpression inhibits cancer cells growth [22918121]. In melanoma cells, the miRNA downregulates the expression of cell cycle regulators such as cyclin D1, D3, and A and Cdk4, which inhibits cell cycle progression. [18379589] Human
    MIR155 microRNA 155 mir-155 is significantly overexpressed in human breast cancer while targeting the miRNA could induce apoptosis and cell cycle arrest as well as inhibit cell growth. [18719391]. Mir155 acts by repressing socs1, a tumor suppressor. In addition, inflammatory signals may activate miR155, thus suggesting that the miRNA serves as a link between inflammation and malignancy formation [20354188]. It is also upregulated in lung cancer and acts an oncogene by targeting Apaf1 and thus reducing apoptosis rate [22996741]. Inhibition of mir-155 radiosensitizes cancer cells [22027557]. Human
    MIR29A microRNA 29a miR-29a reduces the amount of methylation and upregulates a long non-coding RNA form a region called MEG3 that is responsible for inducing apoptotic pathway. Thus reducing tumorgensis in non-malignant hepatocytes [21625215]. Human
    MIR145 microRNA 145 MIR145 is a tumor suppressor that acts by inhibiting IRS-1 in human colon cancer cells. It also targets IGFR1 [17827156; 19391107]. It decreases cell migration in gliomas by targeting CTGF, metastasis and migration-promoting gene. MIR145 is downregulated in astrocytic tumors and oligodendrogliomas [23390502; 23577178]. Human
    miR148a microRNA 148a miR148a belongs to miR148-152 cluster and acts as a tumor-suppressor in different types of cancer. MiR148a expression is suppressed more than 4-fold in gastric cancer. An inverse correlation has been observed between miR148a expression and lymph node metastasis in gastric cancer. Mir148a suppresses migratory abilities of cancer cells and metastasis formation by downregulating the oncogene ROCK1 expression [21994419]. miR148a is downregulated in pancreatic ductal adenocarcinoma (PDAC). it has been shown that miR148a directly targets the 3'UTR region of CDC25B mRNA. CDC25B is a phosphatase that, by activating a cyclin-CDK complex, initiates mitosis, therefore CDC25B suppression by miR148a could have a tumor-suppressor effect on PDAC. [21709669] Human
    miR148b microRNA 148b Mir148b belongs to mir148/152 cluster and acts as a tumor-suppressor in certain types of cancer. As a result of a study of miR148b expression in gastric cancer it has been determined that in 62 percent of cases, in tumor tissue miRNA was downregulated compared to adjacent non-tumor tissue. MiR148b suppresses tumorigenecity by targeting CCKBR, whose action is to mediate the function of gastrin, which has proliferative effects. |21205300] In addition, while miR148b is downregulated in pancreatic cancer tissues, its overexpression inhibits invasion and increases chemosensitivity [23171948]. Human
    miR152 microRNA 152 MiR152 belongs to miR148/152 cluster and can act as a tumor-suppressor. In ovarian cancer, miR152 suppresses DNMT1 directly and inhibits proliferation of cancer cells. [23318422] The miRNA is downregulated in ovarian cancer cells lines and its downregulation may lead to deregulation of cell proliferation in ovarian cancer. [21971665] Human
    MIR15A microRNA 15a MIR15A is a tumor-suppressor downregulated in different types of cancers. In chronic lymphocytic leukemia (CLL) it is downregulated in 68% of cases [12434020]. MIR15A may post-transcriptionally downregulate the expression of Bcl2, thus inducing apoptosis. Therefore, inactivation of MIR15A and MIR16-1 in CLL lymphocytes results in a reduced apoptosis rate [16166262]. In prostate cancer, MIR15A and MIR16-1 are downregulated, which results in decreased repression of FGF-2, thus promoting tumor expansion and invasiveness [21532615]. MIR15A and MIR16-1 are also downregulated in pituitary adenomas as thier expression exhibits an inverse correlation with tumor diameter, therefore possible influence on tumor growth [15648093]. Human
    MIR16-1 microRNA16-1 MIR16-1 is a tumor-suppressor downregulated in different types of cancers. In chronic lymphocytic leukemia (CLL) it is downregulated in 68% of cases [12434020]. MIR16-1 may post-transcriptionally downregulate the expression of Bcl2, thus inducing apoptosis. Therefore, inactivation of MIR15A and MIR16-1 in CLL lymphocytes results in a reduced apoptosis rate [16166262]. In prostate cancer, MIR15A and MIR16-1 are downregulated, which results in decreased repression of FGF-2, thus promoting tumor expansion and invasiveness [21532615]. MIR15A and MIR16-1 are also downregulated in pituitary adenomas as thier expression exhibits an inverse correlation with tumor diameter, therefore possible influence on tumor growth [15648093]. Human
    miR221 microRNA 221 miR221 and miR222 downregulate PTEN, a major tumor suppressor and TIMP3, which induces activation of caspases 8 and 9 [19962668]. Thus miR221 and miR222 enhance tumorigenecity in cell lung cancer, gastric cancer and hepatocarcinoma cells [20618998] Human
    miR222 microRNA 222 miR221 and miR222 downregulate PTEN, a major tumor suppressor and TIMP3, which induces activation of caspases 8 and 9 [19962668]. Thus miR221 and miR222 enhance tumorigenecity in cell lung cancer, gastric cancer and hepatocarcinoma cells [20618998]. Human
    MIR27A microRNA 27a MIR27A can be both a tumor-suppressor and an oncogene. For instance, the expression of miR-27a is significantly lower in acute leukemia compared to normal cells. It has been shown that miRNA-27a inhibits cell growth and promotes apoptosis by targeting 14-3-3θ, a member of 14-3-3 family of anti-apoptotic proteins. [23236401]. Therefore, it acts as a tumor-suppressor in leukemia. However, in gastric cancer mir-27a acts as an oncogene by targeting inhibiting and thus promoting cancer cell growth [18789835]. Human
    BUB1B budding uninhibited by benzimidazoles 1 homolog beta (yeast) Mutations in BUB1B are associated with mosaic variegated aneuplody, a rare human syndrome characterized by aneuplodization, tumour predisposition and several progeroid traits, including short lifespan, growth and mental retardation, cataracts and facial dysmorphisms [16411201; 15475955; 20651707]. Human
    SIRT6 sirtuin 6 SIRT6 is a critical modulator of cancer metabolism. SIRT6 is selectively downregulated in several cancers. Expression of SIRT6 predicts prognosis of tumor-free survival rates [23217706]. Human
    Sirt6 sirtuin 6 (silent mating type information regulation 2, homolog) 6 (S. cerevisiae) Sirt6 knockout mice develop signs of premature ageing including a short lifespan [16439206]. Overexpression of Sirt6 in male mice lengthens the median lifespan by 9.9-14.5% and maximum lifespan by 13.1-15.8% [22367546]. Mice without Sirt6 have a higher risk of gastrointestinal cancers. SIRT6 dampens cancer growth by repressing aerobic glycolysis (i.e. conversion of glucose to lactate; a major feature of cancer cells). Loss of Sirt6 increases the number, size and aggressiveness of tumors. Sirt6 loss leads to tumor formation even without activation of oncogenes. Transformed SIRT6-deficient cells exhibit increased glycolysis and tumor growth. Sirt6 inhibits the transcriptional activity of the oncogene Myc via corepression [23217706]. Sirt6 also protects against diet-induced obesity [http://www.biocompare.com/Life-Science-News/127206-Anti-Aging-Gene-Identified-As-Tumor-Suppressor-In-Mice-Research-Finds/]. House mouse
    • 21 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit