Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Types: + -
  • symbol name observation species
    TSA1 Thiol-Specific Antioxidant 1 A gain-of-function allele of peroxiredoxin (thioredoxin peroxidase, Tsa1) causes a dominant oxidative stress-resistance and robust premature aging phenotype with reduced mean lifespan. These effect is not provoked by altered Tsa1 levels, nor can it be stimulated by deletion, haploinssufficiency or overexpression of wild-type allele [20729566]. Disruption of TSA1 shortens chronological lifespan [15129730]. Replicative lifespan extension by DR in sir2;fob1 double mutant is reduced by TSA1 deletion mutant. Wild-type cells require TSA1 to fully extend lifespan. Mutation in CDC35 (adenylate cyclase), a genetic mimetic of DR, is dependent on TSA1 to extend lifespan [21884982]. Budding yeast
    ADE4 ADEnine requiring 4 ade4 mutation extends chronological lifespan, but not replicative lifespan, and is non-additive with 0.5% glucose or amino-acid DR on chronological lifespan extension. ADE4 deletion in atg16 mutants results only in a partial extension of the chronological lifespan by 0.5% glucose DR [20421943]. Budding yeast
    AIM4 Altered Inheritance rate of Mi 4 AIM4 (alias SOY1) deletion increases chronological and replication lifespan, which is non-additive with DR. On AL mean and maximum replicative lifespan are extended by 63 and 69%, respectively. DR appears to decrease aim4-induced replication lifespan extension, indicating a negative interaction. aim4 mutation does not change DR-induced chronological lifespan extension [21584246]. Budding yeast
    ATG10 AuTophaGy related 10 ATG10 deletion cancels out replicative lifespan extension by DR [18690010]. Budding yeast
    ATG11 AuTophaGy related 11 ATG11 deletion extends replicative lifespan under AL and abrogates DR-lifespan extension [18690010]. Budding yeast
    ATG17 AuTophaGy related 17 ATG17 deletion decreases replicative lifespan under AL and blocks DR-lifespan extension. ATG17 mutant's replicative lifespan decreases by 70% on DR [18690010]. Budding yeast
    ATG2 AuTophaGy related 2 ATG2 deletion prevents chronological lifespan extension induced by amino-acid DR [20421943]. Budding yeast
    PNC1 Pyrazinamidase/NiCotinamidase 1 Cells with 5 copies of PNC1 have a 70% longer replicative lifespan which is cancelled out by SIR2 deletion. PNC1 is upregulated under glucose DR [12736687]. Pnc1 reduces cellular nicotinamide levels, a product and noncompetitive inhibitor of Sir2 deacetylation reaction. Overexpression of PNC1 suppresses the effect of exogenously added nicotinamide on Sir2-dependent silencing at HM loci, telomeres and rDNA loci [12736687; 14729974]. Pnc1 catalyses the breakdown of nicotinamide to nicotinate and ammonia [12736687]. Deletion of PNC1 shortens replicative lifespan approximately by 10% [12736687] and largely prevents replicative lifespan extension of 0.5% glucose restriction. 0.5% glucose restriction slightly extends median replicative lifespan (by 10 - 15%) but not maximum replicative lifespan in pnc1Delta [14724176]. PNC1 overexpression suppresses the inhibitory effect of exogenously added NAM on silencing, lifespan, and Hst1-mediated transcriptional repression [14729974]. Increased expression of PNC1 is both necessary and sufficient for replicative lifespan extension by DR and low-intensity stress. Under non-stressing conditions (2% glucose, 30 degree Celsius), a strain with additional copies of PNC1 (5XPNC1) has 70% longer replicative lifespan than the wild-type and some cells live for more than 70 divisions. Neither DR nor heat stress further increase the lifespan of the 5XPNC1 strain [12736687]. PNC1 deletion decreases chronological lifespan [17110466]. Budding yeast
    DAP2 Dipeptidyl AminoPeptidase 2 DAP2 deletion decreases mean and maximum replicative lifespan under AL by 19 and 36%, respectively, and cancels out the lifespan extending effect of moderate DR [22912585]. Budding yeast
    BMH1 Brain Modulosignalin Homologue 1 Deleting BMH1 extends chronological lifespan by 25% and is associated with activated stress response, decreased ROS levels and increased heat-shock-element-driven transcription activity. BMH1 deletion was non-additive with the genetic DR mimetic cdc25 and tor1. Water starvation (a form of extreme DR) extends chronological lifespan of BMH1 mutant even more as it does in wild-type. BMH1 genetically interacts with DR as well as TOR- and PKA-signaling pathways to regulate lifespan. Phosphorylation of Ser238 on Bmh1 increases during chronological aging, which is delayed by DR or reduced TOR activity [19805817]. Budding yeast
    ATG15 AuTophaGy related 15 Deletion of ATG15 does not affect the lifespan significantly on AL, while DR shortens replicative lifespan of ATG15 deletion mutant by 28% [18690010]. Budding yeast
    ERG3 ERGosterol biosynthesis Deletion of ERG3 decreases replicative lifespan under AL, cancels out replicative lifespan extension of 0.5% glucose DR and results under DR also into a shorter replicative lifespan than under AL [18690010]. Budding yeast
    ERG5 ERGosterol biosynthesis 5 Deletion of ERG5 decreases replicative lifespan by 35% in the a strain [18340043], but increases mean chronological lifespan by 26 - 116% (26, 40, 43, 62, 116) in diploid cells [21447998]. Deletion of ERG5 cancels out the replicative lifespan extension of 0.5% glucose restriction [18690010]. Budding yeast
    ERG6 ERGosterol biosynthesis 6 Deletion of ERG6 cancels out replicative lifespan extension of 0.5% glucose DR and results under DR also into a shorter replicative lifespan than under AL [18690010]. Budding yeast
    FKH1 ForK head Homolog 1 Deletion of FKH1 or FKH2 has no effect on neither replicative, nor chronological lifespan [18225956]. Deletion of both FKH1 and FKH2 reduces mean chronological lifespan by 50% and abrogates lifespan extension and increased stress resistance conferred from water starvation (extreme DR). Modest increase in FKH1 or FKH2 expression results in a slight increased chronological and replicative lifespan as well as stress resistance [22438832]. Budding yeast
    FKH2 ForK head Homolog 2 Deletion of FKH1 or FKH2 has no effect on neither replicative, nor chronological lifespan [18225956]. Deletion of both FKH1 and FKH2 reduces mean chronological lifespan by 50% and abrogates lifespan extension and increased stress resistance conferred from water starvation (extreme DR). Modest increase in FKH1 or FKH2 expression results in slight increased chronological and replicative lifespan as well as stress resistance [22438832]. Budding yeast
    GIS1 GIg1-2 Suppressor 1 Deletion of GIS1 increases replicative lifespan by 25% in the alpha strain [19030232] and causes major although not complete reversion of chronological lifespan extension by 0.5% glucose restriction [18225956]. Budding yeast
    GPA2 G Protein Alpha subunit 2 Deletion of GPA2 increases mean and maximum replicative lifespan by 40% and 26%, respectively [11000115]. Deletion of GPA2 extends replicative lifespan by reducing cAMP-PKA activity and provides a genetic model for DR [11000115]. Budding yeast
    GPR1 G-Protein coupled Receptor 1 Deletion of GRP1 increases mean and maximum replicative lifespan by 41% and 26%, respectively. GRP1 deletion mutants have also longer chronological lifespan. Deletion of GPR1 extends replicative lifespan by reducing cAMP-PKA activity and provides a genetically model for DR [11000115]. Budding yeast
    GSH1 glutathione (GSH) 1 Deletion of GSH1 confers deficiency in glutathione biosynthesis and further increases chronological lifespan under 0.5% glucose restriction, but does not extend chronological lifespan under 2% glucose [18840459]. Therefore, GSH1 has a positive interaction with DR [18840459]. Budding yeast
    HES1 Homologous to kES1 1 Deletion of HES1 (alias OSH5) extends replicative lifespan and is non-additive with moderate DR. Elevation of OSH5 levels by an ERG6 promoter reduces mean, median and maximum replicative lifespan by 25, 18 and 29%. HES1 is required for the longevity effect of DR, Perg6-OSH6, Perg6-ERG2 and Perg6-OSH7 (genetic mimetics of DR). Hes1 is upregulated in response to sterol down-regulation including DR. Deletion of OSH5 delays different steps of endocytosis, a sterol-requireing process [Xia et al., unpublished]. Perg6-OSH6 osh5 double mutant have a lifespan significantly shorter than that of Perg6-OSH6 [Xia et al. upublished]. Budding yeast
    HST1 Homolog of SIR Two (SIR2) 1 Deletion of HST1 blocks the residual replicative lifespan extension by hxk2 mutant in a sir2;fob1;hst2 triple mutant background [16051752]. However, DR can increases the replicative lifespan to a similar extent in sir2;fob1;hst1;hst2 quadruple mutant cells as in sir2;fob1 double mutant cells under 0.5, 0.05 and 0.005% glucose conditions and even by hxk2 deletion mutant [16741098; 17129213]. Budding yeast
    HXK2 HeXoKinase 2 Deletion of HXK2 extends mean and maximum replicative lifespan by about 53% and 33%, respectively. Limiting glucose availability by mutating HXK2 significantly extends replicative lifespan and provides a genetically model of DR [11000115]. HXK2 deletion increases oxygene consumption. Changes in gene expression HXK2 mutation are quite similar to those of dietary-restricted cells. In fact, HXK2 mutants have a transcriptional profile that significantly resembles DR cells and cell overexpressing HAP4 [12124627]. Budding yeast
    IPK1 Inositol Polyphosphate Kinase 1 Deletion of IPK1 increases mean replicative lifespan by 41 - 40% in the alpha strain [16293764; 19030232]. IPK1 deletion extends mean and maximum replicative lifespan by 24 and 19%, respectively, and was non-synergistic with moderate DR [21584246]. Budding yeast
    LCB4 Long-Chain Base 4 Deletion of LCB4 increases replicative lifespan and cancels out replicative lifespan extension of 0.5% glucose DR [18690010]. Budding yeast
    • Page 1 of 4
    • 25 of 80 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit