Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • symbol name observation species
    Hsp70Ba Heat-shock-protein-70Ba Hsp70Ba overexpression reduces mean and maximum lifespan up to 30% [19420297]. hsp70 and hsp22 RNA levels are higher in long-lived than in short-lived fly lines. The HDAC inhibitor TSA causes a higher expression of hsp22 and hsp70, and strikingly influences the lifespan in both long and short-lived lines, with variable degrees (up to 25%) [15695762]. Fruit fly
    Mir27a MicroRNA 27a In Ames dwarf mice (which displays delayed Aging), Mir27a expression is significantly higher than in control mice. Mir27a may be responsible for delayed Aging in dwarf mice: it suppresses the expression of ODC1 and SRM, which in turn suppresses polyamine synthesis in dwarf mice liver. Part of the ability of dwarf mice to suppress or avoid tumor or Cancer growth may be attributed to the decreased Polyamine biosynthesis. [19878148] House mouse
    Atp5j2 ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2 Atp5j2 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    ENSRNOG00000044070 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Rpusd1 RNA pseudouridylate synthase domain-containing protein 1 Rpusd1 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Tceb2 Transcription elongation factor B polypeptide 2 Tceb2 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Rogdi rogdi homolog (Drosophila) Rogdi is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Pdcd5 programmed cell death protein 5 Pdcd5 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    D4ACK9_RAT D4ACK9_RAT is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Sars Seryl-tRNA synthetase, cytoplasmic Sars is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    ATP8_RAT ATP synthase protein 8 ATP8_RAT is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Gadd45gip1 Growth arrest and DNA damage-inducible proteins-interacting protein 1 Gadd45gip1 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Rab3b RAB3B, member RAS oncogene family Rab3b is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Thrsp Thyroid hormone-inducible hepatic protein Thrsp is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Dctn6 dynactin subunit 6 Kndc1 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Cyth2 Cytohesin-2 Cyth2 is transcriptional uprgulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Rpl31 60S ribosomal protein L31 Rpl31 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Tmem218 Transmembrane protein 218 Tmem218 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Resp18 Regulated endocrine-specific protein 18 Resp18 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Chmp2a charged multivesicular body protein 2a Chmp2a is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Cox7c cytochrome c oxidase, subunit VIIc Cox7c is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Rps12 40S ribosomal protein S12 Rps12 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Lamc1 laminin, gamma 1 Lamc1 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Txnrd1 Thioredoxin reductase 1, cytoplasmic Txnrd1 is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    Cox5a Cytochrome c oxidase subunit 5A, mitochondrial Cox5a is transcriptional upregulated in the cerebral cortex at the age 28 months under different longevity conditions such as under dietary restriction (DR) as well as in feeding switch regimens that result in extended lifespan, like early age switch to DR as well as the reverse switch under the influence of the DR-mimetic α-lipoic acid (i.e. DR switched to ad libitum+ lipoic acid) [Shona et al. 2013]. Norway rat
    • Page 1 of 2
    • 25 of 40 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit


    Please log in for making a comment without the need to specify any credentials.