Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Types: + -
    Drug (8)  
  • symbol name observation species
    BTE Black tea extract Black tea extract is a mixture of epicatechins and theaflavins. In fruit fly, upplementation of the diet with black tea extract extends the lifespan by 10% (from 51 to 56 days) and is associated with higher SOD1 and CAT expression [19770032].
    BBE Blueberry extract In fruit fly, supplementation of the diet with 5 mg/mL blueberry extract significantly extends the mean lifespan by 10% and is accompanied by an up-regulation of superoxide dismutase (SOD), catalase (CAT), and Rpn11 and down-regulationg of Methuselah (MTH). Lifespan is only extended in Oregon-R wild-type but not in SOD(n108) or Cat(n1) mutant strains [22197903].
    Oligomycin In fruit fly, Oligomycin feeding exends lifespan on ad libitum and prevents an increase in longevity under DR (started in the adulthood) in males [19968629].
    Gonadermasides D In budding yeast application of gonadermasides D significantly increases the replicative lifespan in the K6001 strain by regulating UTH1 [21512225].
    Gonadermasides C In budding yeast application of gonadermasides C significantly increases the replicative lifespan in the K6001 strain by regulating UTH1 [21512225].
    Ganodermasides B Application of Ganodermasides B extends the replicative lifespan of budding yeast in K6001 strain by regulating UTH1 expression [20093034].
    Ganodermasides A Application of Ganodermasides A extends the replicative lifespan of budding yeast in K6001 strain by regulating UTH1 expression [20093034].
    Phloridzin Administration of the apple polyphenol phloridzin at doses of 3, 10, and 30 microMolar siginificantly prolongs the replicative lifespan in K6001 yeast strain (p < 0.01; p < 0.001). Phloridizin improves the viability of cells under oxidative stress (7 microMolar H2O2) in a dose-dependent manner and increases the significantly the expression of SOD1, SOD2, and SIR2 [21597195].
    JUG Jugelone treatment High jugelone concentrations led to premature death. Low juglone concentrations are tolerated well and cause a prolongation of lifespan that is associated with increased expression of small heat-shock protein HSP-16.2, enhanced glutathione levels, and nuclear translocation of DAF-16. Silencing or deletion of daf-16 prevents jugelone-induced adaptations. RNA-interference for SIR-2.1 has the same effects as daf-16 deletion but does not affect nuclear accumulation of DAF-16. DAF-16- and SIR-2.1-dependent alterations in gene expression after challenge with reactive oxygene species lead to lifespan extension [19597959].
    DMSO Dimethyl sulfoxide Treatment with 0.5 and 2% DMSO increases lifespan by 24.4 and 23.0%, respectively. 0.5% DMSO does not affect progeny number or lifespan under thermal stress. Treatment with 0.5% DMSO enhances the mRNA levels of hsp-16.2, hsp-70, lys-7, old-1, and sod-5 by 2.5, 2.9, 1.3, 2.3, and 4.5-fold, respectively, as well as the protein level of lys-7 by 1.5-fold. Lifespan extension confered by DMSO depends on sir-2.1 and daf-16 but not on eat-2 or hsf-1 [20828537].
    DhHP-6 Deterohemin-AlaHisThrValGluLys Deuterohemin containing peptide deterohemin-AlaHisThrValGluLys (DhHP-6) significantly increases mean lifespan (P < 0.05), but not maximum lifespan. DhHP-6 also improves survival rate in acute heat-stress (35 degree Celsius) and rescues sensitivity to paraquat in acute oxidative stress. DhHP-6 treatment up-regulates SOD-3 and also regulates stress resistance genes such as hsp-16.1, hsp16.49 and sir-2.1 daf-16 and sir-2.1 genes are essential for the beneficial effect of DhHP-6 [20528576].
    SHE-5 Rhodiola rosea Treatment of nematodes with the plant adaptogen Rhodiola rosea (SHE-5) increase stress resistance and mean lifespan in a dose-dependent manner. 10-25 microgram/ml SHE-5 signinifanclty increases lifespan between 10 and 20% 9 (P < 0.001), increase maximum lifepsan with 2-3 days and pospones the moment when the first individuals die. With higher concentrations, the effect is weakerm wheras at the highest concentrations (250 microgram/mL) a lifespan shortenening effect of 15-25% (P < 0.001) occurs [18536978].
    SHE-3 Eleutherococcus senticosus Treatment of nematodes with the plant adaptogen Eleutherococcus senticosus (SHE-3; alias Acantopanax senticosus) increase stress resistance and mean lifespan in a dose-dependent manner. 250 microgram/ml SHE-3 signinifanclty increases lifespan between 10 and 20% 9 (P < 0.001), increase maximum lifepsan with 2-3 days and pospones the moment when the first individuals die. With higher concentrations, the effect is weakerm wheras at the highest concentrations (2500 microgram/mL) a lifespan shortenening effect of 15-25% (P < 0.001) occurs. Treatment with SHE-3 induces translocation of DAF-16 and activation of HSP-16 [18536978].
    Asc Ascrobate In budding yeast, the hypersensitivity to oxygene and significantly decreased replicative lifespan of SOD1 deletion can be ameliorated by exogenous ascorbate. If acorbate's negative effects of auto-oxidation are prevented by exchange of medium, ascorbate prolongs mean and maximum replicative lifespan in the atmosphere of air and pure oxygene [15621721].
    PDTC Pyrrolidine dithiocarbamate Treatment of Drosophila imago with PDTC increases median (by 11-13%) and maximum (by 11-14%) lifespan in females and males, respectively [22661237]. Fruit fly
    Wortmannin Treatment of Drosophila imago with 0.5 micromolar wortmannin increases median (by 5%) and maximum (by 39%) lifespan in males (p < 0.001), but the lifespan differences in females were statistical insignificant (p > 0.05) [22661237]. Low dose of wortmannin (5 microM) slightly increase the median and maximum lifespan [20017609].
    LY294002 Treatment of Drosophila imago with 5 micromolar LY294002 increases median (by 14%) and maximum (by 16-22%) lifespan (p<0.001) in females and males, respectively [22661237]. Low dose of LY294002 (5 microM) slightly increase the median and maximum lifespan of fruit fly [20017609]. Fruit fly
    AP Apple polyphenol Apple polyphenols mainly consists of procyanidins, which are composed of (-)-epicatechins and (+)-catechins. Treatment of C. elegans with 100 microgram/mL apple polyphenol increases mean lifespan of wild-type N2 and FEM-1 by 12.0 and 5.3%, respectively [20717869]. In fruit flies, supplemention of the diet with apple polyphenol significantly extends mean lifespan by 10% and is accompanied by up-regulation of SOD1, SOD2 and CAT as well as downregulation of MTH in aged animals [21319854].
    PC Procyanidin Treatment of C. elegans with 65 microgram/mL Procyanidins from apple extends the lifespan of N2 and FEM-1 by 12.1 to 8.4%, respectively and does not modify grwoth, food intake of fecundity. Procyanidin treatment has no effect on mev-1 or sir-2.1 mutants [20717869].
    NAD Nicotinamide Adenine Dinucleotide Supplementation with NAD extended lifespan of C. elegans and this extension was dependent on sir-2.1 and daf-16 and associated with upregulation of sod-3 [19370397].
    Quercitin Quercitin significantly extends the lifespan in C. elegans. Lifespan extension by quercitin has no effect on reproduction and body length. Quercitin induced lifespan extenison was neither dependent on a dietary restriction mimetic nor on sir-2.1 [19043800].
    Curcumin Curcumin increases lifespan in *C. elegans* and is associated with reduced ROS and lipofuscin during aging. Curcumin lifespan extension is attributed to its antioxidative properties. Lifespan extension had effects on body size and pharyngeal pumping rate but not on reproduction. Lifespan-extension by curcumin is abolished in osr-1, sek-1, mek-1, skn-1, unc-43, sir-2.1 and age-1 mutants, whereas curcumin treatment prolongs lifespan of mev-1 and daf-16 mutants [21855561]. *C. elegans* feed low concentration of curcumin have a decreased lipofuscin levels and enhanced the resistance to heat stress and increased mean lifespan by 39% and a maximum lifespan extended by 21.4% [23325575]. In fruit fly that survive an average of 64 days, an increase of mean lifespan to 80 days occurs in flies, with females of one strain and males of another strain experiencing an extension in lifespan. The lifespan response to curcimun exhibits variation in male and female, although the compound extends lifespan in both genders [23325575]. In fruit fly, 0.5 an 1.0 mg/g curcumin in the diet increases mean lifespan by 6.2 and 25% in females and by 15.5 and 12.6 in males, respectively. Lifespan extension by curcumin was associated with the increased superoxide dismutase (SOD) activity, upregulation of Ms-SOD and CuZn-SOD genes, and the downregulation of *dInR*, *ATTD*, *Def*, *CecB* and, *DptB* genes as well as reduction of lipofuscin, malondialdehyde and lipid peroxidation [22653297; 23325575]. Curcumin prolongs life and enhances activity of fruit fly Alzheimer diseased flies [22348084].
    Icariin Icariin Icariin and its derivate icariside II extend lifespan. Animals treated with icariin have high levels of icariside II [22216122]. Nematode
    Icariside II Icariside II Icariside II and its derivate icarrin extend lifespan. Animals treated with icariin have high levels of icariside II. Icariside II also increases thermo and oxidative stress tolerance, slow locomotion decline in late adulthood and delay the onset of paralysis mediated by polyQ and ABeta(1-42) proteotoxicity. Lifespan extension by Icariside II is dependent on IIS, since daf-16(mu86) and daf-2(e1370) fails to sho exhibit lifespan extension upon icariside treatment. Incariside II treatment upregulates expression of DAF-16 targets in wild-type. HSF-1 has also a role in icariside II-dependent lifespan extension [22216122]. Nematode
    Rapa Rapamycin In budding yeast treatment with rapamcyin increases mean and maximum replicative lifespan by 19 and 16% Rapamycin fails to extend the lifespan of sir2 mutants or NAM treated wild-type cells [20947565]. Rapamcyin treatment increases mean chronological lifespan by by approximately by 80% in BY4742 [22790951]. Rapamycin extends chronological lifespan proportional with increasing concentrations from 100 pg/mL to 1 ng/mL [16418483]. Treatment with rapamcyin in nemaotdes increases mean, median, 75th %ile and maximum lifespan by 19-29, 17-29, 24-32 an 19%, respectively on OP50. On HT115 rapamycyin extends mean, median and 75th %ile of lifespan by 8-36, 4-46 and 12-44%, respectively. Rapamycin robustly increases lifespan in two daf-16 mutants (mgDf47 and mu86) with or without FUdR and with growth on either the standard strain OP50 or the feeding RNAi strain HT115 [22560223]. Treatment of Drosophila imago with rapamycin induces increases of median (by 5-6%) lifespan (p < 0.01) in males and females, respectively and increase of maximum lifespan (by 33%) in females (p < 0.01) [22661237]. Rapamcyin increases mouse lifespan even when administrated late in life [19587680]. Low dose of rapamycin (5 microM) slightly increase the median and maximum lifespan in fruit fly [20017609]. Rapamcyin increases mouse lifespan and healthspan even when administrated late in life (20 months) [19587680]. Rapamycin enhances learning and memory in young mice and improves these faculties in old mice thereby negating the normal decline in these functions with age. Rapamycin boost levels of neurotransmitters associated with neural plasticity. Rapamycin also lowered anxiety and depressive-like behaviour at all ages from 4, 12 and 28 months. "Happy, feel-good" neurotransmitters such as serotonin, dopamine and norepinephrine are all significantly augmented in the midbrains of rapamycin treated mice [http://denigma.de/url/37]. Treatment with rapamycin increased lifespan and suppresses spontanous tumorgenesis in inbred female mice [22107964].
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit