Factors

We need to know every factor which determines lifespan.

Lifespan factors often but not always originate from defined genetic elements. They are not just genes, by definition they can be anything for which a Classifications schema can be build for that is related to the regulation of lifespan, such entities may include Single-Nucleotide Polymorphism, transcript variants, proteins and their complexes, compounds (i.e. small molecules like metabolites and drugs), etc. A factor should be based on a defined molecular entity or genomic position and been classified. It shall be highly flexible and scalable Concept.

While individual lifespan factors within each species or precise defined molecular entities will be captured within the Lifespan App, Data Entries of the Data App may summarize for instance the relevance of each factor class (e.g. homologous group; chemical derivate of related structure and properties, etc.) as well as draw overall conclusions. o

prometheus--2.jpg

  • Types: + -
  • symbol name observation species
    EXO1 exonuclease 1 The rs1776180 C allele in the promoter of EXO1 is significantly enriched in female Germans centenarians and this can be replicated in 445 female French centenarians. The C allele leads to the loss of binding site for the basic helix-loop-helix transcription factor E47, resulting in higher EXO1 expression [19698732].EXO1 was found to be associated with longevity [19698732]. EXO1 was not found to be associated with longevity [23770741]. Human
    mir-34 mir-34 loss triggers a gene expression profile of accelerated brain aging, late-onset brain degeneration and catastrophic decline in survival, while mir-34 upregulation extends median lifespan and mitigated neurodegeneration induced by polyglutamine. Fruit fly
    SOD1 SuperOxide Dismutase 1 The overexpression of Sods, mitochondrial Sod2 and cytosolic CuZnSod (Sod1), in combination delays the age-dependent reversible inactivation of mitochondrial aconitase, a superoxide-sensitive enzyme, and extends chronological lifespan by 30% [12586694]. Deletion of SOD1 decreases replicative lifespan by 40% [17460215]. Overexpression of SOD1 with CCS1 levuates the level of Cn, Zn-Sod activity and increased chronological lifespan. However overexpression of SOD1 without high cooper or simultonous overexpression of CCS1 shortened both chronological and replicative lifespan [15659212]. Overexpression of SOD1 has no effect on replicative lifespan [10224252]. Deletion of SOD1 shortens replicative lifespan by approximately 40%. The magnitude of the decrease in lifespan does not appear to dependent on oxygen concentration in the atmosphere [12020810]. Deletion of SOD1 shortens replicative lifespan [10547026]. Deletion of SOD1 shortens replicative as well as chronological lifespan [10222047]. Cells with a deletion of SOD1 exhibit a profound defect in entry into and survival during stationary phase (i.e. chronological lifespan) in the W303-B strain [8647826; 10222047], which is partially suppressed by expression of human Bcl-2 [9199172]. Hypersensitivity to oxygene and significantly decreased replicative lifespan of SOD1 deletion can be ameliorated by exogenous ascorbate. If acorbate's negative effects of auto-oxidation are prevented by exchange of medium, ascorbate prolongs mean and maximum replicative lifespan in the atmosphere of air and pure oxygene [15621721]. SOD1 deletion causes sensitivity to hyperoxia as well as methionine and lysine auxotrohies [9199172]. Budding yeast
    • 3 factors
    Factors are an extension of GenAge and GenDR.

    Comment on This Data Unit